a)
If $P$ is applied horizontally to the mass which lies at rest, we can resolve $F = ma$ with acceleration $a=0$ to find the normal reaction $R$, and from this find the maximum frictional force $F_{\text{MASS}}=\mu R$.
In the upwards direction we have
\begin{align}
F & = ma \\
R - mg & = 0 \\
R & = mg \\
& = \var{mass} \times 9.8 \\
& = \var{mass*9.8}
\end{align}
The maximum possible frictional force is $F_{\text{MASS}} = \mu R = \var{mu} \times \var{R} = \var{precround(mu*R,3)} \ \mathrm{N}$. Therefore to achieve movement $P$ must exceed $\var{precround(mu*R,3)} \ \mathrm{N}$.
b)
Note that if $ \tan \alpha = \frac{\var{O}}{\var{A}}$ then using SOHCAHTOA where $O = \var{O}$, $A = \var{A}$ and $H = \sqrt{\var{O}^2 + \var{A}^2}$ we have that $\sin \alpha = \frac{\var{O}}{\sqrt{\var{O}^2 + \var{A}^2}}$ and $\cos \alpha = \frac{\var{A}}{\sqrt{\var{O}^2 + \var{A}^2}}$.
$P$ is applied at an angle above the horizontal as shown in the diagram. We can resolve $F=ma$ in the upward direction where acceleration $a=0$.
\begin{align} R + P \sin \alpha - mg & = ma \\
R + \frac{\var{O}}{\sqrt{\var{O}^2 + \var{A}^2}}P - (\var{mass} \times 9.8)& = 0 \\
R & = \var{mass*9.8} - \frac{\var{O}}{\sqrt{\var{O}^2 + \var{A}^2}}P
\end{align}
We can now resolve $F=ma$ in the horizontal direction, where acceleration is also zero and $F_{\text{MAX}} = \mu R = \var{mu} \times \left( \var{mass*9.8} - \frac{\var{O}}{\sqrt{\var{O}^2 + \var{A}^2}}P \right)$.
\begin{align} P \cos \alpha - F_{\text{MAX}} &= ma \\
P \cos \alpha & = F_{\text{MAX}} \\
\frac{\var{A}}{\sqrt{\var{O}^2 + \var{A}^2}} P & = \var{mu} \times \left( \var{mass*9.8} - \frac{\var{O}}{\sqrt{\var{O}^2 + \var{A}^2}}P \right) \\
& = \var{mu*mass*9.8} - \frac{\var{mu*O}}{\sqrt{\var{O}^2 + \var{A}^2}} P \\
\left( \frac{\var{A}}{\var{precround(H,3)}} + \var{precround(mu*O/H,3)} \right) P & = \var{mu*mass*9.8} \\
P & = \frac{ \var{mu*mass*9.8}}{ \left( \frac{\var{A}}{\var{precround(H,3)}} + \var{precround(mu*O/H,3)} \right)} \\
& = \var{precround((mu*mass*9.8)/(A/H + mu*O/H),3)} \end{align}
Therefore $P$ must exceed $\var{precround((mu*mass*9.8)/(A/H + mu*O/H),3)} \ \mathrm{N}$ in order for the mass to start moving.
c)
Note that if $\tan \alpha = \frac{\var{O2}}{\var{A2}}$ then using SOHCAHTOA where $O = \var{O2}$, $A = \var{A2}$ and $H = \sqrt{\var{O2}^2 + \var{A2}^2}$ we have that $\sin \alpha = \frac{\var{O2}}{\sqrt{\var{O2}^2 + \var{A2}^2}}$ and $\cos \alpha = \frac{\var{A2}}{\sqrt{\var{O2}^2 + \var{A2}^2}}$.

We can resolve $F = ma$ in the upward direction where acceleration is zero.
\begin{align}
R - mg - P \sin \alpha & = m \times 0 \\
R & = mg + P \sin\alpha \\
& = \var{mass*9.8} + \frac{\var{O2}}{\sqrt{\var{O2}^2 + \var{A2}^2}}P
\end{align}
From this we can calculate $F_{\text{MAX}} = \mu \times R = \var{mu} \times \left(\var{mass*9.8} + \frac{\var{O2}}{\sqrt{\var{O2}^2 + \var{A2}^2}}P\right)$.
We then resolve $F = ma$ in the horizontal direction, where once again acceleration is zero.
\begin{align} P \cos \alpha - F_{\text{MAX}} & = m \times 0 \\
\frac{\var{A2}}{\sqrt{\var{O2}^2 + \var{A2}^2}}P & = \var{mu}\left(\var{mass*9.8} + \frac{\var{O2}}{\sqrt{\var{O2}^2 + \var{A2}^2}}P\right) \\
\left(\frac{\var{A2}}{\sqrt{\var{O2}^2 + \var{A2}^2}} - \frac{\var{mu} \times \var{O2}}{\sqrt{\var{O2}^2 + \var{A2}^2}}\right)P & = \var{mu} \times \var{mass*9.8} \\
\var{precround((A2/H2) - (mu*O2/H),3)} P & = \var{mu*9.8*mass} \\
P & = \var{precround((mu*9.8*mass)/(A2/H2 - mu*O2/H),3)} \end{align}
Therefore $P$ must exceed $\var{precround((mu*9.8*mass)/(A2/H2 - mu*O2/H),3)}N$ in order for the mass to start moving.