Number of Questions:
Marks Available:
Pass Percentage:
Time Allowed:
This exam is running in standalone mode. Your answers and marks will not be saved!

Paused

The Exam has been suspended. Press Resume to continue.

You will be able to resume this session the next time you start this activity.

Click on a question number to see how your answers were marked and, where available, full solutions.

Question Number Score
/
Total / (%)

Performance Summary

Exam Name:
Session ID:
Student's Name: ()
Exam Start:
Exam Stop:
Time Spent:

The exam has finished. You may now close this window.

\( \begingroup \)

Find the solutions of the following ordinary differential equations satisfying the condition $y=1$ at $x=2$.

You may find it instructive to sketch your various solutions (but this is not required for this CBA).

a)

$\displaystyle{\frac{dy}{dx}=\frac{y}{\var{a1}x}}$

$y=\;\;$ Expected answer:

Do not enter decimals in your answer; use only fractions or integers.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

b)

$\displaystyle{\frac{dy}{dx}=-\var{a2}\frac{y}{x}}$

$y=\;\;$ Expected answer:

Do not enter decimals in your answer; use only fractions or integers.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

c)

$\displaystyle{\frac{dy}{dx}=\var{a3}\frac{x}{y}}$

The solution can be written in the form $y^2=f(x)$. Enter $f(x)$ in the box below

$y^2=\;\;$ Expected answer:

Do not enter decimals in your answer; use only fractions or integers.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

d)

$\displaystyle{\frac{dy}{dx}=-\var{a4}\frac{x}{y}}$

The solution can be written in the form $y^2=g(x)$. Enter $g(x)$ in the box below

$y^2=\;\;$ Expected answer:

Do not enter decimals in your answer; use only fractions or integers.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

Advice

These are all separable first order differential equations.

a)

$\displaystyle{\frac{dy}{dx}=\frac{y}{\var{a1}x} \Rightarrow \int \frac{1}{y}\;dy = \frac{1}{\var{a1}}\int\frac{1}{x}\;dx \Rightarrow \ln(y)=\frac{1}{\var{a1}}\ln(x)+C}$

Exponentiation of both sides then gives $y=Ax^{1/\var{a1}}$ where we have renamed the constant of integration.

To find the particular solution satisfying $y=1$ at $x=2$, we have $\displaystyle{1=A \times 2^{1/\var{a1}} \Rightarrow A = \frac{1}{2^{1/\var{a1}}}}$

Hence the solution is $\displaystyle{y=\left(\frac{x}{2}\right)^{1/\var{a1}}}$

b)

$\displaystyle{\frac{dy}{dx}=-\var{a2}\frac{y}{x} \Rightarrow \int \frac{1}{y}\;dy = -\var{a2}\int\frac{1}{x}\;dx \Rightarrow \ln(y)=-\var{a2}\ln(x)+C}$

Exponentiation of both sides then gives $y=Ax^{-\var{a2}}$ where we have renamed the constant of integration.

The particular solution satisfying $y=1$ at $x=2$, gives $A = 2^{\var{a2}}$

Hence the solution is $\displaystyle{y=\left(\frac{2}{x}\right)^{\var{a2}}}$

c)

$\displaystyle{\frac{dy}{dx}=\var{a3}\frac{x}{y} \Rightarrow \int y\;dy = \var{a3}\int x\;dx \Rightarrow \frac{y^2}{2}=\var{a3}\frac{x^2}{2}+C\Rightarrow y^2=\var{a3}x^2+A}$

The particular solution satisfying $y=1$ at $x=2$, gives $A = \var{1-4*a3}$.

Hence the solution is $\displaystyle{y^2=\simplify[std]{{a3}x^2+{1-4*a3}}}$.

d)

$\displaystyle{\frac{dy}{dx}=-\var{a4}\frac{x}{y} \Rightarrow \int y\;dy = -\var{a4}\int x\;dx \Rightarrow y^2=-\var{a4}x^2+A}$

The particular solution satisfying $y=1$ at $x=2$, gives $A = \var{1+4*a4}$.

Hence the solution is $\displaystyle{y^2=\simplify[std]{{-a4}x^2+{1+4*a4}}}$.

\( \endgroup \)
\( \begingroup \)

Find the solution of:
\[\frac{dy}{dx}=\var{a}y^{\var{n}}\]
which satisfies $y(0)=\var{b}$

Input your solution in the form $y^{\var{n-1}}=f(x)$


$y^{\var{n-1}}=\;\;$ Expected answer:

Input all numbers as integers or fractions – not as decimals.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

Advice

\[\frac{dy}{dx}=\var{a}y^{\var{n}} \Rightarrow y^{\var{-n}}\frac{dy}{dx}=\var{a}\]

Hence on integrating both sides we have $\displaystyle{-\frac{y^{\var{1-n}}}{\var{n-1}}=\var{a}x+ A}$ where $A$ is an arbitrary constant.

It makes calculation a little easier if we replace the arbitrary constant $A$ in this equation by $\displaystyle{-\frac{A}{\var{n-1}}}$ (which is still an arbitrary constant) to get:

\[\begin{eqnarray*} -\frac{y^{\var{1-n}}}{\var{n-1}}&=&\var{a}x- \frac{A}{\var{n-1}}\\ \Rightarrow y^{\var{1-n}}&=& A-\var{a*(n-1)}x\end{eqnarray*} \]
Using the condition $y(0)=\var{b}$ we get $\displaystyle \var{b}=A^{-1/\var{n-1}}\Rightarrow A = \simplify[std]{{b}^{1-n}=1/{b^(n-1)}}$.

This gives \[\displaystyle y^{\var{1-n}}=\simplify[std]{1/{b^(n-1)}-{a*(n-1)}x} \Rightarrow y^{\var{n-1}}=\frac{\var{b^(n-1)}}{1-\var{a*(n-1)*b^(n-1)}x}\]

 

\( \endgroup \)
\( \begingroup \)

Find the solution of:
\[y\frac{dy}{dx}+\var{a}x^2+\var{b}x+\var{c}=0\]
which satisfies $y(0)=\var{d}$

Solution is:


$y=\;\;$ Expected answer:

Input all numbers as integers or fractions – not as decimals.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

Advice

\[y\frac{dy}{dx}+\var{a}x^2+\var{b}x+\var{c}=0\]
We can separate variables to get:
\[y\frac{dy}{dx}=-\var{a}x^2-\var{b}x-\var{c}\]

and on integrating we get ($A$ is the arbitrary constant of integration):
\[\begin{eqnarray*} \frac{y^2}{2}&=&A - \left(\simplify[std]{{a}/{3}*x^3+{b}/2*x^2+{c}}x\right)\Rightarrow\\ y^2&=&2A- \left(\simplify[std]{{2*a}/{3}*x^3+{b}*x^2+{2*c}}x\right) \end{eqnarray*} \]
Using $y(0)=\var{d}$ gives $2A=\var{d^2}$ and so the solution is:

\[y=\simplify[std]{Sqrt({d ^ 2} - ((({2 * a} / {3}) * (x ^ 3)) + ({b} * (x ^ 2)) + ({(2 * c)} * x)))}\]

\( \endgroup \)
\( \begingroup \)

Find the solution of:

\[\frac{dy}{dx}=\simplify[std]{(1+y^2)/({a}+{b}x)}\]
which satisfies $y(1)=\var{u}$

Note that if $\pi$ is in your expression you enter it as pi.

Solution is:


$y=\;\;$ Expected answer:

Input all numbers as integers or fractions – not as decimals.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

Advice

We can separate the variables to get

\[\frac{dy}{dx}= \simplify[std]{(1+y^2)/({a}+{b}x)} \Rightarrow \frac{1}{1+y^2}\frac{dy}{dx}=\simplify[std]{{a}+{b}x}\]

On integrating we get:
\[\arctan(y)=\frac{1}{\var{b}}\ln\left(\left|\var{a}+\var{b}x\right|\right)+A \Rightarrow y=\tan\left(\frac{1}{\var{b}}\ln\left(\left|\var{a}+\var{b}x\right|\right)+A\right)\]
To fix the arbitrary constant of integration we use the condition $y(1)=\var{u}$.

As $\arctan(\var{u})=\var{v}$ we see that $\displaystyle{A = \var{v}-\frac{1}{\var{b}}\ln(|\var{a+b}|)}$.

Hence the solution is

\[y=\simplify[std]{tan(({((t * (t -1)) / 2)} * (pi / 3)) + ({((t -1) * (t -2)) / 2} * (pi / 4)) + ((1 / {b}) * ln(abs(({a} + ({b} * x)) / {a + b}))))}\]

\( \endgroup \)
\( \begingroup \)

Find the solution of:
\[x\frac{dy}{dx}+\var{a}y=\simplify[std]{{b}x^{n}}\]

which satisfies $\displaystyle{y(1)=\simplify[std]{{b*(c+1)}/{a+n}}}$

Solution is:

$y=\;\;$ Expected answer:

Input all numbers as integers or fractions – not as decimals.

You can get help by clicking on Steps – you will not lose any marks by doing so.

$\displaystyle{x\frac{dy}{dx}+\var{a}y=\simplify[std]{{b}x^{n}}}$ is a linear equation of the special type where we can multiply both sides by $\simplify[std]{x^{a-1}}$ to get:
\[x^{\var{a}}\frac{dy}{dx}+\simplify[std]{{a}x^{a-1}*y}=\simplify[std]{{b}x^{n+a-1}}\]
But the left hand side of this equation can be written as $\displaystyle{x^{\var{a}}\frac{dy}{dx}+\simplify[std]{{a}x^{a-1}*y}=\frac{d(x^{\var{a}}y)}{dx}}$

Using this we can now solve the equation.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

()

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

Advice

$\displaystyle{x\frac{dy}{dx}+\var{a}y=\simplify[std]{{b}x^{n}}}$ is a linear equation of the special type where we can multiply both sides by $\simplify[std]{x^{a-1}}$ to get:
\[\frac{d(x^{\var{a}}y)}{dx}=\simplify[std]{{b}x^{a+n-1}}\]
We can integrate both sides to get:
\[x^{\var{a}}y=\simplify[std]{{b}/{a+n}x^{a+n}+A}\]
to determine $A$ we use the condition $\displaystyle{y(1)=\simplify[std]{{b*(c+1)}/{a+n}}}$ and we see that:
\[A = \simplify[std]{{b*(c+1)}/{a+n} - {b}/{a+n} = {b*c}/{a+n}}\]
and so the solution is:
\[x^{\var{a}}y=\simplify[std]{{b}/{a+n}x^{a+n}+{b*c}/{a+n}} \Rightarrow y=\simplify[std]{{b}/{a+n}*(x^{n}+{c}*x^{-a})}\]

\( \endgroup \)
\( \begingroup \)

Find the solution of:
\[\frac{dy}{dx}=\simplify[std]{({a}x+{b}y)/x}\]

which satisfies $\displaystyle{y(1)=\simplify[std]{{c-a}/{b-1}}}$

Solution is:

$y=\;\;$ Expected answer:

Input all numbers as integers or fractions – not as decimals.

You can get help by clicking on Steps – you will not lose any marks by doing so.

If you have a differential equation of the form $\displaystyle{\frac{dy}{dx}=g\left(\frac{y}{x}\right)}$ for a suitable function $g$,
then you can convert it to a separable equation by making the substitution $\displaystyle{v=\frac{y}{x}}$ or $y=v\;x$.
Using this in the original equation gives an equation you can solve.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

()

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

Advice

$\displaystyle{\frac{dy}{dx}=\simplify[std]{({a}x+{b}y)/x} \Rightarrow \frac{dy}{dx}=\simplify[std]{{a}+{b}y/x}}$ on dividing out the left hand side of the equation.

Let $y=v\;x$ and we have $\displaystyle{\frac{dy}{dx}=v+x\frac{dv}{dx}}$. Hence on substituting in the equation we get:
\[\begin{eqnarray*} v+x\frac{dv}{dx}&=&\simplify[std]{{a}+{b}*v}\\\Rightarrow x\frac{dv}{dx}&=&\simplify[std]{{a}+{b-1}*v}\\ \Rightarrow \simplify[std]{1/({a}+{b-1}*v)}\frac{dv}{dx}&=&\frac{1}{x} \end{eqnarray*} \]
On integrating we get:
\[\begin{eqnarray*} \simplify[std]{(1 / {b -1}) * ln(Abs({a} + {b -1} * v))} &=& \ln(x) + A_1\\ \Rightarrow\simplify[std]{ ln(Abs({a} + {b -1} * v))}&=&\simplify[std]{{b-1}*ln(x)}+A_2\\ &=&\simplify[std]{ln(x^{b-1})}+A_2 = \simplify[std]{ln(A_3*x^{b-1})} \end{eqnarray*} \]
If we now take exponentials and put $\displaystyle{v=\frac{y}{x}}$ we have:
\[\begin{eqnarray*} \simplify[std]{{a} + {b -1} * y/x}&=&A_3\simplify[std]{x^{b-1}}\\ \Rightarrow\simplify[std]{{b -1} * y/x}&=&A_3\simplify[std]{x^{b-1}}-\var{a}\\ \Rightarrow y&=&\simplify[std]{A_3/{b-1}*x^{b}-{a}/{b-1}*x} \end{eqnarray*} \]
But we know that $\displaystyle{y(1)=\simplify[std]{{c-a}/{b-1}}}$ which gives $\displaystyle{\simplify[std]{{c-a}/{b-1}}=\simplify[std]{A_3/{b-1}-{a}/{b-1}}}$

and we find that $A_3=\var{c}$.

Hence the solution is:
\[y = \simplify[std]{1/{b-1}*({c}x^{b}-{a}x)}\]

\( \endgroup \)
\( \begingroup \)

Find the solution of:
\[\frac{dy}{dx}=\simplify[std]{(x^2+y^2+{a}x*y)/({a}*x^2)}\]
which satisfies $y(1)=\var{u}$

Note that if $\pi$ is in your expression you enter it as pi.

Please note that if you want to input a function multiplied by $x$ of the form $xf(x)$ then input as $x*f(x)$ as the system thinks you are inputting a function called $xf$.

Solution is:

$y=\;\;$ Expected answer:

Input all numbers as integers or fractions – not as decimals.

You can get help by clicking on Steps – you will not lose any marks by doing so.

If you have a differential equation of the form $\displaystyle{\frac{dy}{dx}=g\left(\frac{y}{x}\right)}$ for a suitable function $g$,
then you can convert it to a separable equation by making the substitution $\displaystyle{v=\frac{y}{x}}$ or $y=v\;x$.
Using this in the original equation gives an equation you can solve.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

()

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

Advice

\[\frac{dy}{dx}=\simplify[std]{(x^2+y^2+{a}x*y)/({a}*x^2)}\Rightarrow \frac{dy}{dx}=\simplify[std]{1/{a}(1+(y/x)^2)+y/x}\] on dividing out the right hand side of the equation.
Let $y=v\;x$ and we have $\displaystyle{\frac{dy}{dx}=v+x\frac{dv}{dx}}$. Hence on substituting into the equation we get:
\[\begin{eqnarray*} v+x\frac{dv}{dx}&=&\simplify[std]{1/{a}*(1+v^2)+v}\\ \Rightarrow x\frac{dv}{dx}&=&\simplify[std]{1/{a}*(1+v^2)}\\ \Rightarrow \frac{1}{1+v^2}\frac{dv}{dx}&=&\simplify[std]{1/{a}*x} \end{eqnarray*} \]
On integrating we get:
\[\arctan(v)=A_1+\simplify[std]{1/{a}*ln(abs(x))} \Rightarrow v = \tan\left(A_1+\simplify[std]{1/{a}*ln(abs(x))}\right)\]
On putting $\displaystyle{v=\frac{y}{x}}$ we have $\displaystyle{y=x\tan\left(A_1+\simplify[std]{1/{a}*ln(abs(x))}\right)}$

But we know that $y(1)=\var{u}$ hence $\displaystyle{\var{u} = \tan(A_1) \Rightarrow A_1=\var{v}}$

Hence the solution is :
\[y = x\tan\left(\simplify[std]{(({((t * (t -1)) / 2)} * (pi / 3)) + ({((t -1) * (t -2)) / 2} * (pi / 4)) + (1 / {a}) * ln(abs(x)))}\right)\]

\( \endgroup \)
\( \begingroup \)

The thickness of ice on water, $x(t)$, grows according to the equation:
\[\frac{dx}{dt}=\simplify[std]{{a}/(x+{b})^{n}}\]
Given that $x(0)=0$ find $x(t)$.

o +
1
2
3
4
5
6
7
8
9
10
−1
0.0929
0.186
0.279
0.372
0

The thickness at time $t$ is given by:

$x(t)=\;\;$ Expected answer:

Input all numbers as integers or fractions – not as decimals.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

Advice

On rearranging the equation we get $\displaystyle{\simplify[std]{(x+{b})^{n}*(dx/dt) = {a}}}$ and on integrating we obtain:
$\displaystyle{\simplify[std]{(x+{b})^{n+1}/{n+1}={a}t +A} \Rightarrow x+\var{b}=(A+\var{a*(n+1)}t)^{1/\var{n+1}}}$

Using the condition $x(0)=0$ gives $\displaystyle{A^{1/\var{n+1}}=\var{b} \Rightarrow A=\var{b^(n+1)}}$

Hence the solution is:
\[x(t) = \simplify[std]{({(b ^ (n + 1))} + ({(a * (n + 1))} * t)) ^ (1 / {(n + 1)}) - {b}}\]

o +
−1
10
9
8
7
6
5
4
3
2
1
0.372
0.279
0.186
0.0929
0

\( \endgroup \)
\( \begingroup \)

An object moves in a straight line with an acceleration given by:
\[f(t)=\frac{\var{a}}{(1+\var{b}t)^{\var{n}}}\]

where $t$ is time.

Given that the object starts from rest, find its maximum possible speed (i.e. its limiting speed).

Maximum possible speed = Expected answer: $m/s$

Input as a fraction or an integer and not as a decimal.

This feedback is on your last submitted answer. Submit your changed answer to get updated feedback.

Advice

If $v(t)$ is the velocity at time $t$ then the acceleration at time $t$ is $\displaystyle{\frac{dv}{dt}}$.

Hence we have the differential equation for the velocity:

\[\frac{dv}{dt}=\frac{\var{a}}{(1+\var{b}t)^{\var{n}}}=\simplify[std]{{a}(1+{b}t)^{-n}}\] where $v(0)=0$ as the object starts from rest.
Integrating this gives: $\displaystyle{v(t) = \simplify[std]{-{a}/{b*(n-1)}*(1+{b}*t)^{-n+1}+A}}$.

Since $v(0)=0$ this gives $\displaystyle{A=\simplify[std]{{a}/{b*(n-1)}}}$ and so the solution is:

$\displaystyle{v(t) = \simplify[std]{{a}/{b*(n-1)}(1-(1+{b}*t)^{-n+1})}}$

It follows that the limiting speed is:

\[\lim_{t \to \infty} v(t) = \simplify[std]{{a}/{b*(n-1)}}m/s\] as

\[(1+\var{b}t)^{\var{-n+1}}=\simplify[std]{1/(1+{b}t)^{n-1}} \rightarrow 0,\;\;t \rightarrow \infty\]

\( \endgroup \)