Multiply the first equation by $\var{b1}$ and the second equation by $\var{b}$ so they both have the same $y$ coefficient:
\begin{align}
\simplify{{a*b1}x+{b*b1}y} &= \var{c*b1} \\
\simplify{{a1*b}x+{b1*b}y} &= \var{c1*b}
\end{align}
Next, subtract the second equation from the first to get
\[ \simplify[std]{{a*b1-a1*b}x} = \var{c*b1-c1*b} \]
So $x = \simplify[std]{{(c*b1-c1*b)/(a*b1-a1*b)}}$.
Substitute this value of $x$ into the first equation and rearrange to obtain $y$:
\begin{align}
\simplify[std]{{a}*{(c*b1-c1*b)/(a*b1-a1*b)} + {b}y} &= \var{c} \\
\simplify[std]{{b}y} &= \simplify[std]{{c}-{a*(c*b1-c1*b)/(a*b1-a1*b)}} \\
y &= \simplify[std]{{(c-a*(c*b1-c1*b)/(a*b1-a1*b))/b}}
\end{align}