The quadratic formula is
\[x={\frac {-b\pm\sqrt{b^2-4\times a\times c}}{2a}}\text{.}\]
a)
From the equation, we can read off values for $a$, $b$ and $c$:
\[\begin{align}
a&=1\text{,}\\
b&=\var{a+m}\text{,}\\
c&=\var{a*m} \text{.}
\end{align}\]
Substituting these values into the quadratic formula,
\[x = \frac {-\var{a+m}\pm\sqrt{\var{a+m}^2-4\times \var{a*m}}}{2}\text{.}\]
Note the $\pm$ symbol in the formula. This means there are two solutions: one using $+$, the other using $-$.
The two solutions are
\[\begin{align}
x_1&=\var{m}\text{,}\\
x_2&=\var{a}\text{.}
\end{align}\]
b)
Note that the right-hand side of the given equation is not zero. We need to rewrite it in the form $ax^2+bx+c=0$:
\[\begin{align}
\simplify{{a1}x^2+{a2}x+{a3}}&=\var{a4}\\
\simplify{{a1}x^2+{a2}x+{a3-a4}}&=0\text{.}
\end{align}\]
Then we can read off values for $a$, $b$ and $c$:
\[\begin{align}
a&=\var{a1}\\
b&=\var{a2}\\
c&=\var{a3-a4} \text{.}
\end{align}\]
We can now substitute these values into the quadratic formula:
\[x = {\frac {-\var{a2}\pm\sqrt{\var{a2}^2-4\times \var{a1}\times \var{a3-a4}}}{2\times\var{a1}}}\text{.}\]
So the two solutions are
\[\begin{align}
x_1&=\var{dpformat(x1,2)}\\
x_2&=\var{dpformat(x2,2)}\text{.}
\end{align}\]
c)
We first rearrange our equation into the form $ax^2+bx+c=0$:
\[\begin{align}
\simplify{{b1}x^2+{b2}x+{b3}}&=0=\var{b4}x\\
\simplify{{b1}x^2+{b2-b4}x+{b3}}&=0\text{.}
\end{align}\]
We can then read off the values for $a, b$ and $c$, which are
\[\begin{align}
a&=\var{b1}\text{,}\\
b&=\var{b2-b4}\text{,}\\
c&=\var{b3}\text{.}
\end{align}\]
Substituting these values into the quadratic formula,
\[x = {\frac {-\var{b2-b4}\pm\sqrt{\var{b2-b4}^2-4\times \var{b1}\times \var{b3}}}{2\times\var{b1}}},\]
we obtain solutions
\[\begin{align}
x_1&=\var{dpformat(p1,2)}\text{,}\\
x_2&=\var{dpformat(p2,2)}\text{.}
\end{align}\]