// Numbas version: exam_results_page_options {"name": "Oracle: Isomorphisms of a binary tree ", "extensions": ["permutations", "eukleides"], "custom_part_types": [{"source": {"pk": 2, "author": {"name": "Christian Lawson-Perfect", "pk": 1}, "edit_page": "/beta/part_type/2/edit"}, "name": "Write an equivalent word", "short_name": "write-a-word-producing-a-given-permutation", "description": "
The student must write a word on the given generators which is equivalent to the given word.
\nThe generators are given as a dictionary mapping letters to permutations.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "settings[\"correctWord\"]", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "generator_dict:\nsettings[\"generators\"]\n\nstudent_letters:\nsplit(replace_regex(\"[^a-z]\",\"\",lower(studentanswer),\"g\"),\"\")\n\nvalid_letters:\nassert(all(map(x in generator_dict,x,student_letters)),\n warn(\"Your word is invalid. You must only use letters corresponding to generators.\");\n fail(\"Your word is invalid. You must only use letters corresponding to generators.\")\n)\n\nstudent_word:\nmap(generator_dict[x],x,student_letters)\n\nstudent_perm:\niterate_until([p*word[-1],word[0..-1]],[p,word],[permutation(\"\"),student_word],len(word)=0)[-1][0]\n\ncorrect_letters:\nsplit(replace_regex(\"[^a-z]\",\"\",lower(settings[\"correctWord\"]),\"g\"),\"\")\n\ncorrect_word:\nmap(generator_dict[x],x,correct_letters)\n\ncorrect_perm:\niterate_until([p*word[-1],word[0..-1]],[p,word],[permutation(\"\"),correct_word],len(word)=0)[-1][0]\n\nperm_is_correct:\nif(student_perm=correct_perm,\n correct()\n, incorrect(\"Your answer is incorrect: your word produced the ordering \"+join(list(student_perm),' ')+\".\")\n)\n\nmark:\napply(valid_letters);\napply(perm_is_correct)\n\ninterpreted_answer:\nstudent_letters", "marking_notes": [{"name": "generator_dict", "description": "", "definition": "settings[\"generators\"]"}, {"name": "student_letters", "description": "The letters in the student's word. Any non-letter characters are removed.
", "definition": "split(replace_regex(\"[^a-z]\",\"\",lower(studentanswer),\"g\"),\"\")"}, {"name": "valid_letters", "description": "Are all of the letters in the student's word in the generator dictionary? Fail if not.
", "definition": "assert(all(map(x in generator_dict,x,student_letters)),\n warn(\"Your word is invalid. You must only use letters corresponding to generators.\");\n fail(\"Your word is invalid. You must only use letters corresponding to generators.\")\n)"}, {"name": "student_word", "description": "", "definition": "map(generator_dict[x],x,student_letters)"}, {"name": "student_perm", "description": "The permutation produced by the student's word.
", "definition": "iterate_until([p*word[-1],word[0..-1]],[p,word],[permutation(\"\"),student_word],len(word)=0)[-1][0]"}, {"name": "correct_letters", "description": "", "definition": "split(replace_regex(\"[^a-z]\",\"\",lower(settings[\"correctWord\"]),\"g\"),\"\")"}, {"name": "correct_word", "description": "", "definition": "map(generator_dict[x],x,correct_letters)"}, {"name": "correct_perm", "description": "", "definition": "iterate_until([p*word[-1],word[0..-1]],[p,word],[permutation(\"\"),correct_word],len(word)=0)[-1][0]"}, {"name": "perm_is_correct", "description": "", "definition": "if(student_perm=correct_perm,\n correct()\n, incorrect(\"Your answer is incorrect: your word produced the ordering \"+join(list(student_perm),' ')+\".\")\n)"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "apply(valid_letters);\napply(perm_is_correct)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "student_letters"}], "settings": [{"name": "generators", "label": "Generators", "help_url": "", "hint": "A dictionary mapping letters to elements of the group.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "correctWord", "label": "Correct word", "help_url": "", "hint": "The word that the student must produce.", "input_type": "string", "default_value": "", "subvars": true}], "public_availability": "restricted", "published": false, "extensions": ["permutations"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Oracle: Isomorphisms of a binary tree ", "tags": [], "metadata": {"description": "Made for my TALMO talk. This demonstrates how you can use a part with no marks as an oracle to perform calculations, to help the student check their working.
", "licence": "None specified"}, "statement": "Consider the binary tree $B_\\var{depth}$ with $2^\\var{depth}$ leaves.
\n{tree_diagram(depth,1..2^depth)}
\nIn the diagram, each dashed line represents the action of swapping the two branches of the tree on either side of the line, in place.
", "advice": "", "rulesets": {}, "extensions": ["eukleides", "permutations"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"word_to_apply": {"name": "word_to_apply", "group": "Ungrouped variables", "definition": "repeat(random(generator_names),5)", "description": "", "templateType": "anything", "can_override": false}, "generators": {"name": "generators", "group": "Ungrouped variables", "definition": "let(\n n, 2^depth,\n fn,expression(\"[flip(a,b,n)]+if(b-a>2, eval(fn,['a':a,'b':(a+b)/2])+eval(fn,['a':(a+b)/2,'b':b]),[])\"),\n eval(fn,['a':0,'b':n])\n)", "description": "Generators for the isomorphism group of
", "templateType": "anything", "can_override": false}, "list_generators": {"name": "list_generators", "group": "Ungrouped variables", "definition": "html(\"Which of the generators commute with each other? 1 if they commute, 0 otherwise.
", "templateType": "anything", "can_override": false}, "depth": {"name": "depth", "group": "Ungrouped variables", "definition": "3", "description": "", "templateType": "anything", "can_override": false}, "generator_names": {"name": "generator_names", "group": "Ungrouped variables", "definition": "map(letterordinal(j),j,0..len(generators)-1)", "description": "The names of each generator. The root node is called a, then the ones directly under it are called b and c, and so on.
", "templateType": "anything", "can_override": false}, "generator_dict": {"name": "generator_dict", "group": "Ungrouped variables", "definition": "dict(zip(generator_names,generators))", "description": "A dictionary mapping generator names to the corresponding permutation of the leaves.
", "templateType": "anything", "can_override": false}, "permutation_to_produce": {"name": "permutation_to_produce", "group": "Ungrouped variables", "definition": "apply_word(word_to_produce)", "description": "A permutation to be produced by a word given by the student.
", "templateType": "anything", "can_override": false}, "word_to_produce": {"name": "word_to_produce", "group": "Ungrouped variables", "definition": "shuffle(generator_names)[0..3]", "description": "A word corresponding to the permutation that the student must produce.
\nChosen so that the student's word is at least 3 letters long.
", "templateType": "anything", "can_override": false}, "generator_to_reproduce": {"name": "generator_to_reproduce", "group": "Ungrouped variables", "definition": "random(generator_names[1..len(generator_names)])", "description": "A generator that the student must write in terms of the other generators. $a$ is excluded, since it can't be written in terms of the others.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["depth", "generators", "generator_names", "generator_dict", "word_to_apply", "list_generators", "commutes", "word_to_produce", "permutation_to_produce", "generator_to_reproduce"], "variable_groups": [], "functions": {"flip": {"parameters": [["a", "number"], ["b", "number"], ["n", "number"]], "type": "permutation", "language": "jme", "definition": "permutation(let(\n l,(b-a)/2,\n map(\n switch(\n a<=j0,[\n b..point(x(b),(-depth-2)*y_spread) dashed gray description(\"reflection line through node {letterordinal(j)}\")\n , b label(letterordinal(j),deg(if(n=depth,45,90))) description(\"node {letterordinal(j)}\")\n ],[\n let(x,k+1-2^depth,leaf, leaf_labels[x],b label(leaf,deg(-90)) description(\"leaf labelled {leaf}\"))\n ])\n + if(n>0,\n eval(fn,['a':b,'b':b+vector(-x_spread*2^(n-1),-y_spread),'n':n-1,'j':j+1,'k':2k+1])\n + eval(fn,['a':b,'b':b+vector(x_spread*2^(n-1),-y_spread),'n':n-1,'j':j+2^(n-1),'k':2k+2])\n ,[]\n )\n \"\"\")),\n max_width(30,eukleides(\"A binary tree with depth {depth}\",eval(fn,['a':point(0,0),'b':point(0,-y_spread),'n':min(depth,5),'j':0,'k':0]))\n))\n "}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "write-a-word-producing-a-given-permutation", "useCustomName": true, "customName": "Experimentation", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "note: \n feedback(\"This word produces the ordering: \"+join(list(student_perm),' '));\n feedback(tree_diagram(depth,list(student_perm)));\n feedback(\"hey\")\n\nmark:\n apply(valid_letters);\n apply(note)", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "You can use this part to see how different words act on the graph.
\nEach time you submit this part, you will be shown the order of the leaves under the action of the word you typed.
", "settings": {"generators": "generator_dict", "correctWord": "a"}}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What are each of the leaves mapped to under the action of the word $\\var{latex(join(word_to_apply,' '))}$?
", "correctAnswer": "matrix(list(apply_word(word_to_apply)))", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2^depth", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "write-a-word-producing-a-given-permutation", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Write a word which produces the following ordering of the leaves:
\n{join(list(permutation_to_produce),' ')}
", "settings": {"generators": "generator_dict", "correctWord": "{join(word_to_produce,\"\")}"}}, {"type": "write-a-word-producing-a-given-permutation", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "is_right_length: \n assert(len(student_letters)>=6,\n incorrect(\"Your word must contain at least 6 letters.\")\n )\n\nmark:\n apply(base_mark);\n apply(is_right_length)", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Write another word which produces that ordering of the leaves, of length at least 6.
", "settings": {"generators": "generator_dict", "correctWord": "{join(word_to_produce,\"\")}"}}, {"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which generators commute?
", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": false, "shuffleAnswers": false, "displayType": "checkbox", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": "generator_names", "matrix": "commutes", "layout": {"type": "lowertriangle", "expression": ""}, "answers": "generator_names"}, {"type": "write-a-word-producing-a-given-permutation", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "didnt_use_target:\n assert(not (settings[\"correctWord\"] in student_letters),\n incorrect(\"You must not use the letter $\"+settings[\"correctWord\"]+\"$ in your word.\")\n )\n\nmark:\n apply(base_mark);\n apply(didnt_use_target)", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Write a word equivalent to the generator $\\var{latex(generator_to_reproduce)}$, without using $\\var{latex(generator_to_reproduce)}$.
", "settings": {"generators": "generator_dict", "correctWord": "{generator_to_reproduce}"}}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the order of each of the generators?
", "minValue": "2", "maxValue": "2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the order of the group $\\Gamma(B_\\var{depth})$?
", "minValue": "2^(2^(depth)-1)", "maxValue": "2^(2^(depth)-1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Give an expression for the order of $\\Gamma(B_n)$.
", "answer": "2^(2^n-1)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "n", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/beta/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Andrew Duncan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/409/"}, {"name": "George Stagg", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/930/"}, {"name": "Sam Mutter", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9360/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/beta/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Andrew Duncan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/409/"}, {"name": "George Stagg", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/930/"}, {"name": "Sam Mutter", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9360/"}]}