// Numbas version: finer_feedback_settings {"percentPass": 50, "feedback": {"feedbackmessages": [], "intro": "", "showanswerstate": true, "advicethreshold": 0, "showtotalmark": true, "showactualmark": true, "allowrevealanswer": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "showQuestionGroupNames": false, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questions": [{"name": "Integration by parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "s3", "s2", "s1", "a1", "a2"], "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "exponential function", "integrals", "integration", "integration by parts", "integration of exponential function", "steps"], "preamble": {"css": "", "js": ""}, "advice": "

a)

\n

The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n

We choose $u = \\simplify[std]{{a}x+{b}}$ and $\\displaystyle\\frac{dv}{dx} = \\simplify[std]{e^({c}x)}$.

\n

So $\\displaystyle \\frac{du}{dx} = \\var{a}$ and $\\displaystyle v = \\simplify[std]{(1/{c})*e^({c}*x)}$.

\n

Hence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{({a}*x+{b})*e^({c}*x)} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({1}/{c})*({a}x+{b})*e^({c}x) - (1/{c})*Int(({a})*e^({c}x),x)} \\\\ &=& \\simplify[std]{(1/{c})*({a}x+{b})*e^({c}x) -({a}/{c^2})*e^({c}x) + C}\\\\ &=& \\simplify[std]{(({a}x+{b})/{c}-{a}/{c^2})*e^({c}*x) + C}\\\\ &=& \\simplify[std]{(({a}/{c})x+{b*c-a}/{c^2})*e^({c}*x) + C} \\end{eqnarray} \\]

\n

Hence $\\displaystyle \\simplify[std]{g(x)=({a}/{c})*x+{c*b-a}/{c^2}}$

\n

b)

\n

For this part we choose $u = \\simplify[std]{({a}x+{b})^2}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{e^({c}x)}$.

\n

So $\\displaystyle \\frac{du}{dx}$ = $\\simplify[std]{{2*a}*({a}*(x)+{b})}$ and $\\displaystyle v = \\simplify[std]{(1/{c})*e^({c}*x)}$.

\n

Hence,
\\[ \\begin{eqnarray*}I= \\int \\simplify[std]{({a}*x+{b})^2*e^({c}*x)} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({1}/{c})*({a}x+{b})^2*e^({c}x) - (1/{c})*Int({2*a}*({a}x+{b})*e^({c}x),x)} \\\\ &=& \\simplify[std]{(1/{c})*({a}x+{b})^2*e^({c}x) -({2*a}/{c})*Int(({a}x+{b})*e^({c}x),x)}\\dots (*) \\end{eqnarray*}\\]

\n

But in Part a we have aready worked out $\\displaystyle \\simplify[std]{Int(({a}x+{b})*e^({c}*x),x)=(({a}/{c})*x+({c*b-a}/{c^2}))*e^({c}*x)+C}$ 

\n

So on substituting this in equation (*) we find:
\\[ \\begin{eqnarray*}I&=& \\simplify[std]{(1/{c})*({a}x+{b})^2*e^({c}x) -({2*a}/{c})*(({a}/{c})*x+({c*b-a}/{c^2}))*e^({c}*x)+C}\\\\ &=& \\simplify[std]{({a^2}/{c}*x^2+{2*a*b*c-2*a^2}/{c^2}*x+{b^2*c^2-2*a*b*c+2*a^2}/{c^3})*e^({c}x) +C} \\end{eqnarray*}\\]

\n

Hence $\\displaystyle \\simplify[std]{h(x)={a^2}/{c}*x^2+{2*a*b*c-2*a^2}/{c^2}*x+{b^2*c^2-2*a*b*c+2*a^2}/{c^3}}$

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 1, "prompt": "\n

$I=\\displaystyle \\int \\simplify[std]{({a}x+{b})*e^({c}x)} dx $
You are given that the answer is of the form \\[I=g(x)e^{\\var{c}x}+C\\] for a polynomial $g(x)$. You have to find $g(x)$.

\n

$g(x)=\\;$[[0]]

\n

Input all numbers as fractions or integers and not decimals.

\n

You can get help by clicking on Show steps. You will lose 1 mark if you do.

\n ", "marks": 0, "gaps": [{"notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({a}/{c})*x+{c*b-a}/{c^2}", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n \n \n

The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n \n \n ", "marks": 0}], "type": "gapfill"}, {"prompt": "\n

Use the result from the first part to find:

\n

$\\displaystyle I=\\int \\simplify[std]{({a}x+{b})^2*e^({c}x)} dx $

\n

You are given that the answer is of the form \\[I=h(x)e^{\\var{c}x}+C\\] for a polynomial $h(x)$. You have to find $h(x)$.

\n

$h(x)=\\;$[[0]]

\n

Input all numbers as fractions or integers and not decimals.

\n ", "marks": 0, "gaps": [{"notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{a^2}/{c}*x^2+{2*a*b*c-2*a^2}/{c^2}*x+{b^2*c^2-2*a*b*c+2*a^2}/{c^3}", "marks": 3, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\n

Find the following indefinite integrals.

\n

Input all numbers as fractions or integers and not decimals.

\n ", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "s3*random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "a1": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a2": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}}, "metadata": {"notes": "\n \t\t

3/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Got rid of redundant instructions about inputting constant of integration.

\n \t\t

Penalised use of steps in first part, 1 mark. Added message to that effect in first part.

\n \t\t

Added message about not inputting decimals in appropriate places.

\n \t\t

Changed marks reflecting the use of steps and degree of difficulty in second part.

\n \t\t

Improved Advice display.

\n \t\t", "description": "

Given $\\displaystyle \\int (ax+b)e^{cx}\\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\\displaystyle \\int (ax+b)^2e^{cx}\\;dx =h(x)e^{cx}+C$. 

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Integration by parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["s3", "c", "b", "m"], "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "indefinite integration", "integrals", "integration", "integration by parts", "steps"], "preamble": {"css": "", "js": ""}, "advice": "

The formula for integrating by parts is

\n

\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n

We choose $u = x$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{({b}*x+{c})^{m}}$.

\n

So $\\displaystyle \\frac{du}{dx}$ = $1$ and $\\displaystyle v = \\simplify[std]{(1/{(m+1)*b})*({b}*x+{c})^{m+1}}$.

\n

Hence,
\\[ \\begin{eqnarray*} \\displaystyle \\int \\simplify[std]{x*({b}x+{c})^{m}} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{(x/{(m+1)*b})*({b}*x+{c})^{m+1} - (1/{(m+1)*b})*Int (({b}*x+{c})^{m+1}, x)} \\\\ &=& \\simplify[std]{(x/{(m+1)*b})*({b}*x+{c})^{m+1} - (1/{(m+1)*(m+2)*b^2})*({b}*x+{c})^{m+2}+C} \\\\ &=&\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+2)}x - ({b}x+{c}))+C}\\\\ &=&\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+1)}x - {c})+C} \\end{eqnarray*}\\]
The solution is: $\\simplify[std]{g(x)={b*(m+1)}*x-{c}}$.

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 1, "prompt": "\n

$I=\\displaystyle \\int \\simplify[std]{x*({b}x+{c})^{m}} dx $
You are given that \\[I=\\simplify[std]{({b}x+{c})^{m+1}/{b^2*(m+1)*(m+2)}*g(x)+C}\\]
For a polynomial $g(x)$. You have to find $g(x)$.

\n

$g(x)=\\;$[[0]]

\n

You can get help by clicking on Show steps. You will lose 1 mark if you do.

\n \n ", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{b*(m+1)}*x-{c}", "marks": 3, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n \n \n

The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
Also you need to know that for $n \\neq -1$:
\\[ \\int (ax+b)^n dx = \\frac{1}{a(n+1)}(ax+b)^{n+1}+C\\]

\n \n \n \n ", "marks": 0}], "type": "gapfill"}], "statement": "

Find the following indefinite integral.

", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "c": {"definition": "s3*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "m": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t

3/08/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Added description.

\n \t\t \t\t

Checked calculation. OK.

\n \t\t \t\t

Got rid of redundant instructions about inputting constant of integration.

\n \t\t \t\t

Got rid of instruction re not inputting decimals - no restriction needed, so no forbidden strings.

\n \t\t \t\t

Penalised use of steps, 1 mark. Added message to that effect.

\n \t\t \t\t

Improved Advice display.

\n \t\t \n \t\t", "description": "

Given that $\\displaystyle \\int x({ax+b)^{m}} dx=\\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Integration by parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1"], "tags": ["Calculus", "Steps", "calculus", "constant of integration", "indefinite integration", "integrals", "integrating", "integrating trigonometric functions", "integration by parts", "steps", "twice"], "preamble": {"css": "", "js": ""}, "advice": "

a)

\n

The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n

We choose $u = \\simplify[std]{({a}x+{b})}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{cos({c}*x+{d})}$.

\n

So $\\displaystyle \\frac{du}{dx} = \\simplify[std]{{a}}$ and $\\displaystyle v = \\simplify[std]{(1/{c})*sin({c}*x+{d})}$.

\n

Hence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{({a}*x+{b})*cos({c}*x+{d})} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{(({a}*x+{b})/{c})*sin({c}*x+{d}) - ({a}/{c})*Int(sin({c}*x+{d}),x)} \\\\ &=& \\simplify[std]{(({a}x+{b})/{c})*sin({c}*x+{d}) +({a}/{c^2})*cos({c}*x+{d}) + C} \\end{eqnarray} \\]

\n

b)

\n

For this part we choose $u = \\simplify[std]{({a}x+{b})^2}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{sin({c}*x+{d})}$.

\n

So $\\displaystyle \\frac{du}{dx}=\\simplify[std]{{2*a}*({a}*(x)+{b})}$ and $\\displaystyle v = \\simplify[std]{-(1/{c})*cos({c}*x+{d})}$.

\n

Hence,
\\[ \\begin{eqnarray*}I= \\int \\simplify[std]{({a}*x+{b})^2*e^({c}*x)} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({-1}/{c})*({a}x+{b})^2*cos({c}*x+{d}) + (1/{c})*Int({2*a}*({a}x+{b})*cos({c}*x+{d}),x)} \\\\ &=& \\simplify[std]{({-1}/{c})*({a}x+{b})^2*cos({c}*x+{d}) +({2*a}/{c})*Int(({a}x+{b})*cos({c}*x+{d}),x)}\\dots (*) \\end{eqnarray*}\\]

\n

But in Part a we have aready worked out $\\displaystyle \\simplify[std]{Int(({a}x+{b})*cos({c}*x+{d}),x)=(({a}x+{b})/{c})*sin({c}*x+{d}) +({a}/{c^2})*cos({c}*x+{d})}$ 

\n

So on substituting this in equation (*) we find:
\\[ \\begin{eqnarray*}I&=& \\simplify[std]{({-1}/{c})*({a}x+{b})^2*cos({c}*x+{d}) +({2*a}/{c})*((({a}x+{b})/{c})*sin({c}*x+{d}) +({a}/{c^2})*cos({c}*x+{d}))+C}\\\\ &=& \\simplify[std]{-(({a}*x+{b})^2/{c})*cos({c}*x+{d})+(({2*a}({a}x+{b}))/{c^2})*sin({c}*x+{d})+({2*a^2}/{c^3})*cos({c}*x+{d})+C} \\end{eqnarray*}\\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 1, "prompt": "\n

$I=\\displaystyle \\int \\simplify[std]{({a}x+{b})*cos({c}x+{d})} dx $

\n

$I=\\;$[[0]]

\n

Input all numbers as fractions or integers and not decimals.

\n

You can get help by clicking on Show steps. You will lose 1 mark if you do.

\n \n ", "marks": 0, "gaps": [{"notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({a}*x+{b})/{c}*sin({c}*x+{d})+{a}/{c^2}*cos({c}*x+{d})+C", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n \n \n

The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n \n \n \n ", "marks": 0}], "type": "gapfill"}, {"prompt": "\n

Use the result from the first part to find:

\n

$\\displaystyle I=\\int \\simplify[std]{({a}x+{b})^2*sin({c}*x+{d})} dx $

\n

$I=\\;$[[0]]

\n

Input all numbers as fractions or integers and not decimals.

\n \n ", "marks": 0, "gaps": [{"notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "(-({a}*x+{b})^2/{c})*cos({c}*x+{d})+(({2*a}({a}x+{b}))/{c^2})*sin({c}*x+{d})+({2*a^2}/{c^3})*cos({c}*x+{d})+C", "marks": 4, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\n

Find the following indefinite integrals.

\n

Input all numbers as fractions or integers and not decimals.

\n

Input the constant of integration as $C$.

\n \n ", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t

3/08/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Added description.

\n \t\t \t\t

Got rid of redundant ruleset, added !noLeadingMinus to std ruleset as we need to keep the standard order for integrating by parts.

\n \t\t \t\t

Checked calculation. OK.

\n \t\t \t\t

Penalised use of steps in first part, 1 mark. Added message to that effect in first part.

\n \t\t \t\t

Added message about not inputting decimals in appropriate places.

\n \t\t \t\t

Changed marks reflecting the use of steps and degree of difficulty in second part.

\n \t\t \t\t

Improved Advice display.

\n \t\t \n \t\t", "description": "

Find $\\displaystyle \\int (ax+b)\\cos(cx+d)\\; dx $ and hence find $\\displaystyle \\int (ax+b)^2\\sin(cx+d)\\; dx $ 

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Integration by parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "s3", "s2", "s1", "a1", "a2"], "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "constant of integration", "integrals", "integrating trigonometric functions", "integration", "integration by parts", "steps"], "preamble": {"css": "", "js": ""}, "advice": "

a)

\n

The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n

We choose $u = \\simplify[std]{{a}x}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{sin({b}x+{c})}$.

\n

So $\\displaystyle \\frac{du}{dx}$ = $\\var{a}$ and $v = \\simplify[std]{(-1/{b})*cos({b}x+{c})}$.

\n

Hence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{{a}x*sin({b}x+{c})} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{(-{a}/{b})*x*cos({b}x+{c})} - \\int \\left( \\simplify[std]{(-{a}/{b})*cos({b}x+{c})}\\right) dx \\\\ &=& \\simplify[std]{(-{a}/{b})*x*cos({b}x+{c}) + ({a}/{b^2})*sin({b}x+{c}) + C} \\end{eqnarray} \\]

\n

b)

\n

For this part we choose $u = \\simplify[std]{{a}x}$ and $\\frac{dv}{dx} = \\simplify[std]{cos({b}x+{c})}$.

\n

So $\\displaystyle \\frac{du}{dx}$ = $\\var{a}$ and $\\displaystyle v = \\simplify[std]{(1/{b})*sin({b}x+{c})}$.

\n

Hence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{{a}x*cos({b}x+{c})} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({a}/{b})*x*sin({b}x+{c})} - \\int \\left( \\simplify[std]{({a}/{b})*sin({b}x+{c})}\\right) dx \\\\ &=& \\simplify[std]{({a}/{b})*x*sin({b}x+{c}) + ({a}/{b^2})*cos({b}x+{c}) + C} \\end{eqnarray} \\]

\n

c)

\n

Using the results from Parts a and b, we have \\[\\begin{eqnarray*}I &=& \\int \\simplify[std]{{a1}x*sin({b}x+{c})} dx + \\int \\simplify[std]{{a2}x*cos({b}x+{c})} dx\\\\ &=& \\simplify[std]{{a1}*((-{a}/{b})*x*cos({b}x+{c}) + ({a}/{b^2})*sin({b}x+{c}))+{a2}*(({a}/{b})*x*sin({b}x+{c}) +({a}/{b^2})*cos({b}x+{c}))+C}\\\\ &=&\\simplify[std]{(-{a1}/{b})*x*cos({b}x+{c}) + ({a1}/{b^2})*sin({b}x+{c})+({a2}/{b})*x*sin({b}x+{c}) +({a2}/{b^2})*cos({b}x+{c}) + C}\\\\ &=&\\simplify[std]{({a2}/{b}*x+{a1}/{b^2})*sin({b}x+{c})+({-a1}/{b}*x+{a2}/{b^2})*cos({b}x+{c})+C} \\end{eqnarray*}\\]
Hence
$\\displaystyle \\simplify[std]{f(x) = {a2}/{b}*x+{a1}/{b^2}}$

\n

$\\displaystyle \\simplify[std]{g(x) = {-a1}/{b}*x+{a2}/{b^2}}$

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 1, "prompt": "\n

$\\displaystyle \\int \\simplify[std]{{a}x*sin({b}x+{c})} dx = \\phantom{{}}$[[0]]

\n

Input all numbers as fractions or integers and not decimals.

\n

Input the constant of integration as $C$.

\n

You can get help by clicking on Show steps. You will lose 1 mark if you do.

\n ", "marks": 0, "gaps": [{"notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({a}/{b^2})sin({b}x+{c}) - ({a}/{b})*x*cos({b}x+{c}) + C", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n \n \n

The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n \n \n ", "marks": 0}], "type": "gapfill"}, {"prompt": "\n

$\\displaystyle \\int \\simplify[std]{{a}x*cos({b}x+{c})} dx = \\phantom{{}}$[[0]]

\n

Input all numbers as fractions or integers and not decimals.

\n

Input the constant of integration as $C$.

\n ", "marks": 0, "gaps": [{"notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({a}/{b})*x*sin({b}x+{c}) + ({a}/{b^2})*cos({b}x+{c}) + C", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\n

Using the first two parts find:
$\\displaystyle I=\\int \\simplify[std]{{a1}x*sin({b}x+{c})+{a2}x*cos({b}x+{c})} dx $
You are given that \\[I=\\simplify[std]{f(x)*sin({b}x+{c})+g(x)*cos({b}x+{c})+C}\\]
where $f(x)$ and $g(x)$ are polynomials of degree 1. You have to find $f(x)$ and $g(x)$.

\n

$f(x)=\\;$[[0]] $\\;\\;\\;\\;\\;g(x)=\\;$[[1]]

\n

Input all numbers as fractions or integers and not decimals.

\n ", "marks": 0, "gaps": [{"notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{a2}/{b}*x+{a1}/{b^2}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{-a1}/{b}*x+{a2}/{b^2}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\n

Find the following indefinite integrals.

\n

Input all numbers as fractions or integers and not decimals.

\n

Input the constant of integration as $C$ where needed.

\n ", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "1", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "s3*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "a1": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a2": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}}, "metadata": {"notes": "\n \t\t

3/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Corrected error in second question answer, + changed to -. Also solution to second gap in third part. Advice changed accordingly.

\n \t\t

Checked calculations after corrections. OK.

\n \t\t

Penalised use of steps in first part, 1 mark. Added message to that effect.

\n \t\t

Changed marks to allow for steps penalty.

\n \t\t

Improved Advice display.

\n \t\t", "description": "

Find $\\displaystyle \\int x\\sin(cx+d)\\;dx,\\;\\;\\int x\\cos(cx+d)\\;dx $ and hence $\\displaystyle \\int ax\\sin(cx+d)+bx\\cos(cx+d)\\;dx$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "name": "Simon's copy of Maths Support: Integration by parts", "metadata": {"description": "

4 questions on integrating by parts.

", "licence": "Creative Commons Attribution 4.0 International"}, "timing": {"timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}, "allowPause": true}, "navigation": {"browse": true, "reverse": true, "showfrontpage": false, "showresultspage": "oncompletion", "allowregen": true, "onleave": {"action": "none", "message": ""}, "preventleave": false}, "showstudentname": true, "duration": 0, "type": "exam", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}], "extensions": [], "custom_part_types": [], "resources": []}