// Numbas version: finer_feedback_settings {"navigation": {"browse": true, "showresultspage": "oncompletion", "reverse": true, "allowregen": true, "showfrontpage": true, "startpassword": "", "preventleave": true, "onleave": {"action": "warnifunattempted", "message": "

Please do not ignore the question: I expect you to have mastered this material.

"}}, "duration": 0, "timing": {"timedwarning": {"action": "none", "message": ""}, "timeout": {"action": "none", "message": ""}, "allowPause": true}, "percentPass": "80", "name": "Maria's copy of Linear Equations and Matrices revision", "showstudentname": true, "metadata": {"description": "A collection of questions on solving equations and revising manipulation of small matrices for 2nd year students ", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": true, "feedback": {"allowrevealanswer": true, "showactualmark": true, "advicethreshold": 0, "showanswerstate": true, "showtotalmark": true, "intro": "

This test is intended as a bit of revision of the key parts of first year algebra most of which I will not revise in lectures, in paticular:

\n
    \n
  1. Solving linear equations by Gaussian Elimination
  2. \n
  3. Basic matrix arithmetic
  4. \n
  5. Matrix multiplication
  6. \n
  7. Determinants and inverse of 2x2 matrices, and now determinants behave with products
  8. \n
  9. Determinants of 3x3 matrices
  10. \n
\n

We will take a systematic look at determinants in chapter 5, but I expect you to be comfortable in calculating them in the 2x2 and 3x3 cases. 

", "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "question_groups": [{"name": "Revision test for 2nd Year", "pickQuestions": 1, "pickingStrategy": "all-ordered", "questions": [{"name": "John's copy of Gaussian elimination to solve a 3x3 system of linear equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}, {"name": "Praneetha Singh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2552/"}], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variable_groups": [], "statement": "

Solve the system of equations using Gauss Elimination
\\[\\begin{eqnarray*} &\\var{a}x&+\\;&\\var{a*b-1}y&+\\;\\var{a^2*b-a-a*b}z&=&\\var{c2}\\\\ &\\var{a*c}x&+\\;&\\var{c*b}y&+\\;z&=&\\var{c1}\\\\ &x&+\\;&\\var{b}y&+\\;\\var{b*a-b}z&=&\\var{c3} \\end{eqnarray*} \\]
Part a) Rearrange the order of the equations and represent this as a system of equations using a matrix.
Part b) Introduce zeros in the first column using the first row.
Part c) Introduce zeros in the second coumn below the second entry in the second row using the second row.
Also need to solve for $z$ using the last row of the reduced matrix.
Part d) Solve for $y$ and $x$ using the second and first rows of the reduced matrix.

", "parts": [{"scripts": {}, "customName": "", "showCorrectAnswer": true, "prompt": "\n

Re-arrange the rows so that the third row becomes the first row, the first the second and the second the third.
WHY? Choose one of the following:
[[0]]

\n

Now write down the entries of the matrix you will use for Gaussian Elimination, remember to include the constants as the last column.

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\\[\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\][[1]][[2]][[3]][[4]]\\[\\left) \\begin{matrix} \\phantom{.} \\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
[[5]][[6]][[7]][[8]]
[[9]][[10]][[11]][[12]]
\n ", "gaps": [{"matrix": [1, 0, 0, 0], "scripts": {}, "shuffleChoices": true, "customName": "", "showCorrectAnswer": true, "displayType": "radiogroup", "maxMarks": 1, "choices": ["

To make sure that there is a 1 or -1 in the first row, first column position because that makes the arithmetic easier.

", "

Because you always do this swap.

", "

To make sure that there is a 1 or -1 in the first row, first column position because that makes the arithmetic more stable.

", "

I don't know.

"], "useCustomName": false, "showCellAnswerState": true, "displayColumns": 0, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "marks": 0, "unitTests": [], "variableReplacements": [], "distractors": ["", "", "", ""], "minMarks": 0, "type": "1_n_2", "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst"}, {"allowFractions": true, "maxValue": "1", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "1", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{b}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{b}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{b*a-b}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{b*a-b}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{c3}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{c3}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{a}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{a}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{a*b-1}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{a*b-1}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{a^2*b-a-a*b}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{a^2*b-a-a*b}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{c2}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{c2}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{a*c}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{a*c}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{b*c}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{b*c}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "1", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "1", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": true, "maxValue": "{c1}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{c1}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "sortAnswers": false}, {"scripts": {}, "customName": "", "showCorrectAnswer": true, "prompt": "\n \n \n

Now introduce zeros in the first column below the first entry by adding:
[[0]] times the first row to the second row and
[[1]] times the first row to the third row to get the matrix:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\\[\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] $\\var{1}$ $\\var{b}$ $\\var{b*a-b}$ $\\var{c3}$ \\[\\left) \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
$\\var{0}$ [[2]] [[3]] [[4]]
$\\var{0}$ [[5]] [[6]] [[7]]
\n \n \n \n

Next multiply the second row by [[8]] to get a 1 in the second entry in the second row.

\n \n \n ", "gaps": [{"allowFractions": true, "maxValue": "{-a}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{-a}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.8, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{-a*c}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{-a*c}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.8, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{-1}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{-1}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.6, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{-a}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{-a}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.6, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": true, "maxValue": "{c2-a*c3}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{c2-a*c3}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.6, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{c*b-c*b*a}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{c*b-c*b*a}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.6, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{-a^2*b*c+1+a*b*c}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{-a^2*b*c+1+a*b*c}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.6, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": true, "maxValue": "{c1-a*c*c3}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{c1-a*c*c3}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.6, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": true, "maxValue": "{-1}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{-1}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.8, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "sortAnswers": false}, {"scripts": {}, "customName": "", "showCorrectAnswer": true, "prompt": "\n \n \n

Note that you should have multiplied the second row by a suitable number to get a $1$ in the second entry in the second row.
In this part we introduce a $0$ in the second column below the second entry in the second column by adding:
[[0]] times the second row to the third row to get the matrix:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\\[\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] $\\var{1}$ $\\var{b}$ $\\var{b*a-b}$ $\\var{c3}$ \\[\\left) \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
$\\var{0}$ $\\var{1}$ [[1]] [[2]]
$\\var{0}$ $\\var{0}$ [[3]] [[4]]
\n \n \n \n

From this you should find:

\n \n \n \n

$z=\\;\\;$[[5]]

\n \n \n ", "gaps": [{"allowFractions": false, "maxValue": "{-b*c+a*b*c}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{-b*c+a*b*c}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.8, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": true, "maxValue": "{a}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{a}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.8, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": true, "maxValue": "{a*c3-c2}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{a*c3-c2}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.8, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": true, "maxValue": "{1}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{1}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.8, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": true, "maxValue": "{b*c*(1-a)*(c2-a*c3)+c1-a*c*c3}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{b*c*(1-a)*(c2-a*c3)+c1-a*c*c3}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 0.8, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": true, "maxValue": "{z}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{z}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 2, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "sortAnswers": false}, {"scripts": {}, "customName": "", "showCorrectAnswer": true, "prompt": "\n \n \n

From the second row of the reduced matrix you find an equation involving only $y$ and $z$ and using your value for $z$ we find:

\n \n \n \n

$y=\\;\\;$[[0]]

\n \n \n \n

Then using the first row we have the equation :
\\[\\simplify[all]{x+ {b}y+{b*a-b}z={c3}}\\]

\n \n \n \n

Using this you can now find $x$:

\n \n \n \n

$x=\\;\\;$[[1]]

\n \n \n ", "gaps": [{"allowFractions": false, "maxValue": "{y}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{y}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 3, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}, {"allowFractions": false, "maxValue": "{x}", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "minValue": "{x}", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "useCustomName": false, "mustBeReducedPC": 0, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "marks": 2.6, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": ""}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "sortAnswers": false}], "preamble": {"js": "", "css": ""}, "ungrouped_variables": ["a", "c", "b", "c3", "c2", "y", "x", "c1", "z"], "variables": {"z": {"name": "z", "templateType": "anything", "group": "Ungrouped variables", "definition": "c1+c2*c*(b-a*b)+c3*c*(a^2*b-a-a*b)", "description": ""}, "c1": {"name": "c1", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": ""}, "b": {"name": "b", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": ""}, "c": {"name": "c", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": ""}, "c2": {"name": "c2", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": ""}, "c3": {"name": "c3", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": ""}, "a": {"name": "a", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": ""}, "y": {"name": "y", "templateType": "anything", "group": "Ungrouped variables", "definition": "a*c3-c2-a*z", "description": ""}, "x": {"name": "x", "templateType": "anything", "group": "Ungrouped variables", "definition": "c3-(b*a-b)*z-b*y", "description": ""}}, "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

Look at the revealed answers for this question. All the information needed is there.

", "tags": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Solving a system of three linear equations in 3 unknowns using Gauss Elimination in 4 stages. Solutions are all integral.

"}, "type": "question"}, {"name": "John's copy of Matrix arithmetic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}], "ungrouped_variables": ["a11", "a12", "a21", "a22", "k1", "k2", "b11", "b12", "b21", "b22"], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

Given the matrix:

\n

\\(A=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\)

\n

", "preamble": {"js": "", "css": ""}, "functions": {}, "rulesets": {}, "variables": {"b22": {"name": "b22", "templateType": "anything", "group": "Ungrouped variables", "definition": "{a21}*{a12}+{a22}^2+{k1}*{a22}+{k2}", "description": ""}, "k2": {"name": "k2", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(6 .. 12#1)", "description": ""}, "b21": {"name": "b21", "templateType": "anything", "group": "Ungrouped variables", "definition": "{a12}*{a11}+{a22}*{a12}+{k1}*{a12}", "description": ""}, "b11": {"name": "b11", "templateType": "anything", "group": "Ungrouped variables", "definition": "{a11}^2+{a12}*{a21}+{k1}*{a11}+{k2}", "description": ""}, "a21": {"name": "a21", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(2 .. 9#1)", "description": ""}, "b12": {"name": "b12", "templateType": "anything", "group": "Ungrouped variables", "definition": "{a21}*{a11}+{a22}*{a21}+{k1}*{a21}", "description": ""}, "a22": {"name": "a22", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(11 .. 21#1)", "description": ""}, "a11": {"name": "a11", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(1 .. 10#1)", "description": ""}, "a12": {"name": "a12", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(0 .. 10#1)", "description": ""}, "k1": {"name": "k1", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(2 .. 7#1)", "description": ""}}, "parts": [{"scripts": {}, "customName": "", "showCorrectAnswer": true, "prompt": "

Evaluate the following expression:

\n

\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^T\\) = [[0]]

", "gaps": [{"allowFractions": false, "scripts": {}, "markPerCell": false, "correctAnswer": "matrix([\n [b11,b12],\n [b21,b22]\n]) ", "allowResize": false, "showCorrectAnswer": true, "tolerance": 0, "extendBaseMarkingAlgorithm": true, "type": "matrix", "useCustomName": false, "marks": "5", "correctAnswerFractions": false, "showFeedbackIcon": true, "numColumns": "2", "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "numRows": "2", "customMarkingAlgorithm": "", "customName": ""}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "unitTests": [], "variableReplacements": [], "sortAnswers": false, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst"}], "advice": "

\\(A=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\)

\n

\\(A^2=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\)

\n

Remember multiplication of matrices is carried out by multiplying the rows of the first matrix by the columns of the second matrix.

\n

\\(A^2=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}=\\begin{pmatrix}\\var{a11}*\\var{a11}+\\var{a12}*\\var{a21}&\\var{a11}*\\var{a12}+\\var{a12}*\\var{a22}\\\\ \\var{a21}*\\var{a11}+\\var{a22}*\\var{a21}&\\var{a21}*\\var{a12}+\\var{a22}*\\var{a22}\\end{pmatrix}\\)

\n

\\(A^2=\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}}&\\simplify{{a11}*{a12}+{a12}*{a22}}\\\\ \\simplify{{a21}*{a11}+{a22}*{a21}}&\\simplify{{a21}*{a12}+{a22}*{a22}}\\end{pmatrix}\\)

\n

\\(\\var{k1}A=\\begin{pmatrix} \\var{k1}*\\var{a11}& \\var{k1}*\\var{a12}\\\\ \\var{k1}*\\var{a21}&\\var{k1}*\\var{a22}\\end{pmatrix}=\\begin{pmatrix} \\simplify{{k1}*{a11}}& \\simplify{{k1}*{a12}}\\\\ \\simplify{{k1}*{a21}}&\\simplify{{k1}*{a22}}\\end{pmatrix}\\)

\n

\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t=\\left(\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}}&\\simplify{{a11}*{a12}+{a12}*{a22}}\\\\ \\simplify{{a21}*{a11}+{a22}*{a21}}&\\simplify{{a21}*{a12}+{a22}*{a22}}\\end{pmatrix}+\\begin{pmatrix} \\simplify{{k1}*{a11}}& \\simplify{{k1}*{a12}}\\\\ \\simplify{{k1}*{a21}}&\\simplify{{k1}*{a22}}\\end{pmatrix}+\\begin{pmatrix} \\var{k2}&0\\\\0&\\var{k2}\\end{pmatrix}\\right)^t\\)

\n

\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t=\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}+{k1}{a11}+{k2}}&\\simplify{{a11}*{a12}+{a12}*{a22}+{k1}*{a12}}\\\\ \\simplify{{a21}*{a11}+{a22}*{a21}+{k1}*{a21}}&\\simplify{{a21}*{a12}+{a22}*{a22}+{k1}*{a22}+{k2}}\\end{pmatrix}^t\\)

\n

\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t=\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}+{k1}{a11}+{k2}}&\\simplify{{a21}*{a11}+{a22}*{a21}+{k1}*{a21}}\\\\ \\simplify{{a11}*{a12}+{a12}*{a22}+{k1}*{a12}}&\\simplify{{a21}*{a12}+{a22}*{a22}+{k1}*{a22}+{k2}}\\end{pmatrix}\\)

", "tags": [], "metadata": {"licence": "Creative Commons Attribution-NonCommercial 4.0 International", "description": "

This question tests students knowledge of basic matrix arithmetic.

"}, "variable_groups": [], "type": "question"}, {"name": "John's copy of Matrix multiplication", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}], "preamble": {"js": "", "css": ""}, "ungrouped_variables": ["ba21", "a21", "a22", "a23", "b23", "b22", "b21", "ba22", "w3", "w2", "w1", "ba11", "a11", "ba13", "p1", "q1", "q", "q3", "q2", "ab23", "ab22", "ab21", "s3", "s2", "s1", "a12", "s7", "s6", "s5", "s4", "b12", "b13", "b11", "c13", "c12", "c11", "a33", "a32", "a31", "ba32", "ba33", "a13", "ba31", "s10", "s9", "b32", "b31", "v1", "v2", "v3", "mae", "mad", "mag", "mah", "ba12", "b33", "p2", "p3", "ba23", "ab11", "ab31", "ab32", "ab33", "ab12", "m", "s8", "n", "mac", "p", "s", "r", "u", "w", "v", "y", "x", "z", "ab13"], "showQuestionGroupNames": false, "metadata": {"notes": "\n \t\t \t\t

5/07/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Question appears to be working correctly.

\n \t\t \t\t

 

\n \t\t \n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Elementary Exercises in multiplying matrices. 

"}, "parts": [{"prompt": "\n \n \n

Let

\n \n \n \n

\\[A = \\left(\\begin{array}{rrr} \\var{a11} & \\var{a12} & \\var{a13}\\\\ \\var{a21} & \\var{a22} & \\var{a23}\\\\ \\var{a31} & \\var{a32} & \\var{a33}\\\\\n \n \\end{array}\\right),\\;\\;\\;\\;\n \n B= \\left(\\begin{array}{rrr} \\var{b11} & \\var{b12} & \\var{b13}\\\\ \\var{b21} & \\var{b22} & \\var{b23}\\\\ \\var{b31} & \\var{b32} & \\var{b33}\\\\\n \n \\end{array}\\right),\\;\\;\\;\\;\n \n v= \\left(\\begin{array}{r} \\var{v1}\\\\ \\var{v2} \\\\ \\var{v3} \\end{array}\\right),\\;\\;\\;\\;\n \n w= \\left(\\begin{array}{r} \\var{w1}\\\\ \\var{w2} \\\\ \\var{w3} \\end{array}\\right)\\]

\n \n \n \n

Find the following products:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\\[ Av=\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] [[0]] \\[\\left) \\begin{matrix} \\phantom{.} \\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
[[1]]
[[2]]
\\[ Bw=\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] [[3]] \\[\\left) \\begin{matrix} \\phantom{.} \\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
[[4]]
[[5]]
\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\\[BA=\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] [[6]] [[7]] [[8]] \\[\\left) \\begin{matrix} \\phantom{.} \\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
[[9]] [[10]] [[11]]
[[12]] [[13]] [[14]]
\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\\[AB=\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] [[15]] [[16]] [[17]] \\[\\left) \\begin{matrix} \\phantom{.} \\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
[[18]] [[19]] [[20]]
[[21]] [[22]] [[23]]
\n \n \n \n ", "type": "gapfill", "gaps": [{"minValue": "{p1}", "maxValue": "{p1}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{p2}", "maxValue": "{p2}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{p3}", "maxValue": "{p3}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{q1}", "maxValue": "{q1}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{q2}", "maxValue": "{q2}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{q3}", "maxValue": "{q3}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ba11}", "maxValue": "{ba11}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ba12}", "maxValue": "{ba12}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ba13}", "maxValue": "{ba13}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ba21}", "maxValue": "{ba21}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ba22}", "maxValue": "{ba22}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ba23}", "maxValue": "{ba23}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ba31}", "maxValue": "{ba31}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ba32}", "maxValue": "{ba32}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ba33}", "maxValue": "{ba33}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ab11}", "maxValue": "{ab11}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ab12}", "maxValue": "{ab12}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ab13}", "maxValue": "{ab13}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ab21}", "maxValue": "{ab21}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ab22}", "maxValue": "{ab22}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ab23}", "maxValue": "{ab23}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ab31}", "maxValue": "{ab31}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ab32}", "maxValue": "{ab32}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}, {"minValue": "{ab33}", "maxValue": "{ab33}", "correctAnswerFraction": false, "allowFractions": false, "marks": 0.5, "showPrecisionHint": false, "scripts": {}, "showCorrectAnswer": true, "type": "numberentry"}], "marks": 0, "scripts": {}, "showCorrectAnswer": true}, {"prompt": "

Consider the following matrices together with the matrices from the first part of the question.

\n

\\[\\begin{eqnarray}&C=& \\var{mac},\\;\\;\\;\\; &D=& \\var{mad},\\;\\;\\; \\;&E= &\\var{mae}\\\\&F=& \\left(\\begin{array}{rr} \\var{w1} & \\var{a12}\\\\ \\var{w2} & \\var{b23} \\\\ \\var{w3} & \\var{w2} \\\\\\var{v1} & \\var{b12}\\\\ 0 & \\var{-w2} \\end{array}\\right),\\;\\;\\;\\;&G=&\\var{mag},\\;\\;\\;\\;&H=&\\var{mah} \\end{eqnarray}\\]

\n

Which of the following products of matrices can be calculated?

\n

[[0]]

\n

Please note that for every correct answer you get 0.5 marks and for every incorrect answer 0.5 is taken away. The minimum mark you can get is 0.

", "type": "gapfill", "gaps": [{"layout": {"expression": ""}, "scripts": {}, "showCorrectAnswer": true, "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "matrix": "v", "type": "m_n_x", "choices": ["

$CD$

", "

$DC$

", "

$EF$

", "

$FE$

", "

$BC$

", "

$AE$

", "

$GH$

", "

$HE$

", "

$AG$

", "

$GB$

"], "answers": ["Can be calculated", "Cannot be calculated"], "marks": 0, "maxAnswers": 0, "shuffleAnswers": false, "shuffleChoices": true}], "marks": 0, "scripts": {}, "showCorrectAnswer": true}], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "statement": "

Answer the following questions on matrices.

\n

 

", "type": "question", "variable_groups": [], "advice": "", "functions": {}, "variables": {"mad": {"group": "Ungrouped variables", "name": "mad", "definition": "matrix(repeat(repeat(random(-2..9),q),p))", "templateType": "anything", "description": ""}, "b21": {"group": "Ungrouped variables", "name": "b21", "definition": "random(0..2)", "templateType": "anything", "description": ""}, "s6": {"group": "Ungrouped variables", "name": "s6", "definition": "if(r=3,0.5,-0.5)", "templateType": "anything", "description": ""}, "s7": {"group": "Ungrouped variables", "name": "s7", "definition": "if(u=y,0.5,-0.5)", "templateType": "anything", "description": ""}, "s8": {"group": "Ungrouped variables", "name": "s8", "definition": "if(x=r,0.5,-0.5)", "templateType": "anything", "description": ""}, "a12": {"group": "Ungrouped variables", "name": "a12", "definition": "random(-1,1,2)", "templateType": "anything", "description": ""}, "y": {"group": "Ungrouped variables", "name": "y", "definition": "u+random(0,z)", "templateType": "anything", "description": ""}, "ab21": {"group": "Ungrouped variables", "name": "ab21", "definition": "a21*b11+a22*b21+a23*b31", "templateType": "anything", "description": ""}, "q3": {"group": "Ungrouped variables", "name": "q3", "definition": "b31*w1+b32*w2+b33*w3", "templateType": "anything", "description": ""}, "c12": {"group": "Ungrouped variables", "name": "c12", "definition": "random(1..3)", "templateType": "anything", "description": ""}, "mac": {"group": "Ungrouped variables", "name": "mac", "definition": "matrix(repeat(repeat(random(-2..9),n),m))", "templateType": "anything", "description": ""}, "b13": {"group": "Ungrouped variables", "name": "b13", "definition": "random(-2..2)", "templateType": "anything", "description": ""}, "ab13": {"group": "Ungrouped variables", "name": "ab13", "definition": "a11*b13+a12*b23+a13*b33", "templateType": "anything", "description": ""}, "z": {"group": "Ungrouped variables", "name": "z", "definition": "random(-2,-1,1,2)", "templateType": "anything", "description": ""}, "s2": {"group": "Ungrouped variables", "name": "s2", "definition": "if(q=m,0.5,-0.5)", "templateType": "anything", "description": ""}, "s5": {"group": "Ungrouped variables", "name": "s5", "definition": "if(m=3,0.5,-0.5)", "templateType": "anything", "description": ""}, "b32": {"group": "Ungrouped variables", "name": "b32", "definition": "random(-3..3)", "templateType": "anything", "description": ""}, "ba23": {"group": "Ungrouped variables", "name": "ba23", "definition": "b21*a13+b22*a23+b23*a33", "templateType": "anything", "description": ""}, "ba21": {"group": "Ungrouped variables", "name": "ba21", "definition": "b21*a11+b22*a21+b23*a31", "templateType": "anything", "description": ""}, "ab31": {"group": "Ungrouped variables", "name": "ab31", "definition": "a31*b11+a32*b21+a33*b31", "templateType": "anything", "description": ""}, "a13": {"group": "Ungrouped variables", "name": "a13", "definition": "random(1..2)", "templateType": "anything", "description": ""}, "p2": {"group": "Ungrouped variables", "name": "p2", "definition": "a21*v1+a22*v2+a23*v3", "templateType": "anything", "description": ""}, "ab12": {"group": "Ungrouped variables", "name": "ab12", "definition": "a11*b12+a12*b22+a13*b32", "templateType": "anything", "description": ""}, "b11": {"group": "Ungrouped variables", "name": "b11", "definition": "random(0,1)", "templateType": "anything", "description": ""}, "q": {"group": "Ungrouped variables", "name": "q", "definition": "m+random(0,z)", "templateType": "anything", "description": ""}, "c11": {"group": "Ungrouped variables", "name": "c11", "definition": "random(-2..2)", "templateType": "anything", "description": ""}, "w1": {"group": "Ungrouped variables", "name": "w1", "definition": "random(4..6)", "templateType": "anything", "description": ""}, "q1": {"group": "Ungrouped variables", "name": "q1", "definition": "b11*w1+b12*w2+b13*w3", "templateType": "anything", "description": ""}, "mag": {"group": "Ungrouped variables", "name": "mag", "definition": "matrix(repeat(repeat(random(-2..9),u),w))", "templateType": "anything", "description": ""}, "ab32": {"group": "Ungrouped variables", "name": "ab32", "definition": "a31*b12+a32*b22+a33*b32", "templateType": "anything", "description": ""}, "q2": {"group": "Ungrouped variables", "name": "q2", "definition": "b21*w1+b22*w2+b23*w3", "templateType": "anything", "description": ""}, "s3": {"group": "Ungrouped variables", "name": "s3", "definition": "if(s=5,0.5,-0.5)", "templateType": "anything", "description": ""}, "s4": {"group": "Ungrouped variables", "name": "s4", "definition": "if(r=2,0.5,-0.5)", "templateType": "anything", "description": ""}, "p": {"group": "Ungrouped variables", "name": "p", "definition": "n+random(0,z)", "templateType": "anything", "description": ""}, "ba31": {"group": "Ungrouped variables", "name": "ba31", "definition": "b31*a11+b32*a21+b33*a31", "templateType": "anything", "description": ""}, "ab33": {"group": "Ungrouped variables", "name": "ab33", "definition": "a31*b13+a32*b23+a33*b33", "templateType": "anything", "description": ""}, "p1": {"group": "Ungrouped variables", "name": "p1", "definition": "a11*v1+a12*v2+a13*v3", "templateType": "anything", "description": ""}, "v1": {"group": "Ungrouped variables", "name": "v1", "definition": "random(-3..3)", "templateType": "anything", "description": ""}, "ab23": {"group": "Ungrouped variables", "name": "ab23", "definition": "a21*b13+a22*b23+a23*b33", "templateType": "anything", "description": ""}, "a32": {"group": "Ungrouped variables", "name": "a32", "definition": "random(-4..4)", "templateType": "anything", "description": ""}, "m": {"group": "Ungrouped variables", "name": "m", "definition": "random(3..4)", "templateType": "anything", "description": ""}, "v": {"group": "Ungrouped variables", "name": "v", "definition": "[[s1,-s1],[s2,-s2],[s3,-s3],[s4,-s4],[s5,-s5],[s6,-s6],[s7,-s7],[s8,-s8],[s9,-s9],[s10,-s10]]", "templateType": "anything", "description": ""}, "a31": {"group": "Ungrouped variables", "name": "a31", "definition": "random(1..3)", "templateType": "anything", "description": ""}, "ba22": {"group": "Ungrouped variables", "name": "ba22", "definition": "b21*a12+b22*a22+b23*a32", "templateType": "anything", "description": ""}, "s": {"group": "Ungrouped variables", "name": "s", "definition": "random(4..6)", "templateType": "anything", "description": ""}, "a11": {"group": "Ungrouped variables", "name": "a11", "definition": "random(1..4)", "templateType": "anything", "description": ""}, "p3": {"group": "Ungrouped variables", "name": "p3", "definition": "a31*v1+a32*v2+a33*v3", "templateType": "anything", "description": ""}, "a33": {"group": "Ungrouped variables", "name": "a33", "definition": "random(1..4)", "templateType": "anything", "description": ""}, "mah": {"group": "Ungrouped variables", "name": "mah", "definition": "matrix(repeat(repeat(random(-2..9),x),y))", "templateType": "anything", "description": ""}, "b31": {"group": "Ungrouped variables", "name": "b31", "definition": "random(1..3)", "templateType": "anything", "description": ""}, "ab11": {"group": "Ungrouped variables", "name": "ab11", "definition": "a11*b11+a12*b21+a13*b31", "templateType": "anything", "description": ""}, "u": {"group": "Ungrouped variables", "name": "u", "definition": "random(3..4)", "templateType": "anything", "description": ""}, "a23": {"group": "Ungrouped variables", "name": "a23", "definition": "random(-2..2)", "templateType": "anything", "description": ""}, "s9": {"group": "Ungrouped variables", "name": "s9", "definition": "if(w=3,0.5,-0.5)", "templateType": "anything", "description": ""}, "c13": {"group": "Ungrouped variables", "name": "c13", "definition": "random(1..2)", "templateType": "anything", "description": ""}, "a21": {"group": "Ungrouped variables", "name": "a21", "definition": "random(-1,0,1)", "templateType": "anything", "description": ""}, "w2": {"group": "Ungrouped variables", "name": "w2", "definition": "random(-4..4)", "templateType": "anything", "description": ""}, "n": {"group": "Ungrouped variables", "name": "n", "definition": "random(3..6 except m)", "templateType": "anything", "description": ""}, "x": {"group": "Ungrouped variables", "name": "x", "definition": "u+random(0,z)", "templateType": "anything", "description": ""}, "ab22": {"group": "Ungrouped variables", "name": "ab22", "definition": "a21*b12+a22*b22+a23*b32", "templateType": "anything", "description": ""}, "ba13": {"group": "Ungrouped variables", "name": "ba13", "definition": "b11*a13+b12*a23+b13*a33", "templateType": "anything", "description": ""}, "w3": {"group": "Ungrouped variables", "name": "w3", "definition": "random(-4..4)", "templateType": "anything", "description": ""}, "a22": {"group": "Ungrouped variables", "name": "a22", "definition": "random(-4,-3,-2,-1,1,2,3,5)", "templateType": "anything", "description": ""}, "mae": {"group": "Ungrouped variables", "name": "mae", "definition": "matrix(repeat(repeat(random(-2..9),s),r))", "templateType": "anything", "description": ""}, "v2": {"group": "Ungrouped variables", "name": "v2", "definition": "random(1..4)", "templateType": "anything", "description": ""}, "r": {"group": "Ungrouped variables", "name": "r", "definition": "random(1..3)", "templateType": "anything", "description": ""}, "ba33": {"group": "Ungrouped variables", "name": "ba33", "definition": "b31*a13+b32*a23+b33*a33", "templateType": "anything", "description": ""}, "ba11": {"group": "Ungrouped variables", "name": "ba11", "definition": "b11*a11+b12*a21+b13*a31", "templateType": "anything", "description": ""}, "s10": {"group": "Ungrouped variables", "name": "s10", "definition": "if(u=3,0.5,-0.5)", "templateType": "anything", "description": ""}, "b33": {"group": "Ungrouped variables", "name": "b33", "definition": "random(-2..2)", "templateType": "anything", "description": ""}, "ba12": {"group": "Ungrouped variables", "name": "ba12", "definition": "b11*a12+b12*a22+b13*a32", "templateType": "anything", "description": ""}, "ba32": {"group": "Ungrouped variables", "name": "ba32", "definition": "b31*a12+b32*a22+b33*a32", "templateType": "anything", "description": ""}, "b12": {"group": "Ungrouped variables", "name": "b12", "definition": "random(0,1)", "templateType": "anything", "description": ""}, "b23": {"group": "Ungrouped variables", "name": "b23", "definition": "random(1,2)", "templateType": "anything", "description": ""}, "w": {"group": "Ungrouped variables", "name": "w", "definition": "random(3..5)", "templateType": "anything", "description": ""}, "v3": {"group": "Ungrouped variables", "name": "v3", "definition": "random(-5..5)", "templateType": "anything", "description": ""}, "b22": {"group": "Ungrouped variables", "name": "b22", "definition": "random(-4,-3,-2,-1,1,2,3,4)", "templateType": "anything", "description": ""}, "s1": {"group": "Ungrouped variables", "name": "s1", "definition": "if(n=p,0.5,-0.5)", "templateType": "anything", "description": ""}}, "tags": ["checked2015", "linear algebra", "mas104220122013CBA4_2", "MAS1602", "MAS2223", "matrices", "matrix", "matrix manipulation", "matrix multiplication", "multiply matrix", "products of matrices"], "variablesTest": {"condition": "", "maxRuns": 100}, "question_groups": [{"questions": [], "name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0}]}, {"name": "John's copy of Find determinants and inverses of 2x2 matrices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}], "preamble": {"js": "", "css": ""}, "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers"]}, "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

Let

\n

\\begin{align} \\mathbf{A} &= \\var{a}, & \\mathbf{B} &= \\var{b}, & \\mathbf{C} &= \\var{c} \\end{align}

", "parts": [{"marks": 0, "scripts": {}, "showCorrectAnswer": true, "prompt": "

Calculate the determinants of these matrices.

\n

$\\mathrm{det}\\left(A\\right) = $ [[0]]

\n

$\\mathrm{det}\\left(B\\right) = $ [[1]]

\n

$\\mathrm{det}\\left(C\\right) = $ [[2]]

\n

$\\mathrm{det}\\left(ABC\\right) = $ [[3]]

", "gaps": [{"allowFractions": false, "maxValue": "det(a)", "scripts": {}, "showCorrectAnswer": true, "minValue": "det(a)", "correctAnswerFraction": false, "marks": 0.5, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "maxValue": "det(b)", "scripts": {}, "showCorrectAnswer": true, "minValue": "det(b)", "correctAnswerFraction": false, "marks": 0.5, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "maxValue": "det(c)", "scripts": {}, "showCorrectAnswer": true, "minValue": "det(c)", "correctAnswerFraction": false, "marks": 0.5, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "maxValue": "det(a*b*c)", "scripts": {}, "showCorrectAnswer": true, "minValue": "det(a*b*c)", "correctAnswerFraction": false, "marks": 0.5, "type": "numberentry", "showPrecisionHint": false}], "type": "gapfill"}, {"marks": 0, "scripts": {}, "showCorrectAnswer": true, "prompt": "

Find the inverses of the following matrices. Input all matrix entries as fractions or integers and not as decimals.

\n

$\\mathbf{A}^{-1} = $ [[0]]

", "gaps": [{"allowFractions": true, "scripts": {}, "correctAnswer": "inverse(a)", "allowResize": false, "showCorrectAnswer": true, "tolerance": 0, "marks": "2", "correctAnswerFractions": true, "numColumns": "2", "markPerCell": false, "numRows": "2", "type": "matrix"}], "type": "gapfill"}, {"marks": 0, "scripts": {}, "showCorrectAnswer": true, "prompt": "

$\\mathbf{B}^{-1} = $ [[0]]

", "gaps": [{"allowFractions": true, "scripts": {}, "correctAnswer": "inverse(b)", "allowResize": false, "showCorrectAnswer": true, "tolerance": 0, "marks": "2", "correctAnswerFractions": true, "numColumns": "2", "markPerCell": false, "numRows": "2", "type": "matrix"}], "type": "gapfill"}, {"marks": 0, "scripts": {}, "showCorrectAnswer": true, "prompt": "

$\\mathbf{C}^{-1} = $ [[0]]

", "gaps": [{"allowFractions": true, "scripts": {}, "correctAnswer": "inverse(c)", "allowResize": false, "showCorrectAnswer": true, "tolerance": 0, "marks": "2", "correctAnswerFractions": true, "numColumns": "2", "markPerCell": false, "numRows": "2", "type": "matrix"}], "type": "gapfill"}], "type": "question", "ungrouped_variables": ["a11", "a12", "a21", "a22", "b11", "b12", "b21", "b22", "c11", "c12", "c21", "c22", "tr1", "tr2", "tr3", "tr4"], "variable_groups": [{"variables": ["a", "b", "c"], "name": "Unnamed group"}], "question_groups": [{"pickingStrategy": "all-ordered", "name": "", "questions": [], "pickQuestions": 0}], "advice": "

Determinant of a $2 \\times 2$ matrix

\n

The determinant of a matrix $\\mathrm{M} = \\begin{pmatrix} a&b \\\\ c&d \\end{pmatrix}$ is given by

\n

\\[ \\det\\left(\\mathrm{M}\\right) = ad-bc \\]

\n

If we have two $n \\times n$ matrices $M$ and $N$, then

\n

\\[ \\det\\left(\\mathrm{MN}\\right) = \\det\\left(\\mathrm{M}\\right)\\det\\left(\\mathrm{N}\\right) \\]

\n

And it follows that if we have a third matrix $P$,

\n

\\[ \\det\\left(\\mathrm{MNP}\\right) = \\det\\left(\\mathrm{M}\\right)\\det\\left(\\mathrm{N}\\right)\\det\\left(\\mathrm{P}\\right) \\]

\n

a)

\n

Thus for our example we have:

\n

\\begin{align}
\\det\\left(\\mathrm{A}\\right) &= \\simplify[]{{a11}*{a22}-{a12}*{a21} = {det(a)}} \\\\
\\det\\left(\\mathrm{B}\\right) &= \\simplify[]{{b11}*{b22}-{b12}*{b21} = {det(b)}} \\\\
\\det\\left(\\mathrm{C}\\right) &= \\simplify[]{{c11}*{c22}-{c12}*{c21} = {det(c)}}
\\end{align}

\n

\\begin{align}
\\det\\left( \\mathrm{ABC} \\right) &= \\det(\\mathrm{A}) \\det(\\mathrm{B}) \\det(\\mathrm{C}) \\\\
&= \\simplify[]{{det(a)}*{det(b)}*{det(c)}} \\\\
&= \\var{det(a*b*c)}
\\end{align}

\n

Inverse of a $2 \\times 2$ matrix

\n

Suppose $\\mathrm{M} = \\begin{pmatrix} a&b \\\\ c&d \\end{pmatrix}$ is a $2 \\times 2$ matrix and $\\det\\left(\\mathrm{M}\\right) = \\Delta \\neq 0$.

\n

Then $\\mathrm{M}$ is invertible and

\n

\\[ \\mathrm{M}^{-1} = \\frac{1}{\\Delta} \\begin{pmatrix} d & -b\\\\ -c& a \\end{pmatrix}=\\begin{pmatrix} \\frac{d}{\\Delta} & -\\frac{b}{\\Delta}\\\\ -\\frac{c}{\\Delta}& \\frac{a}{\\Delta} \\end{pmatrix}\\]

\n

Applying this to these examples we obtain:

\n

b)

\n

\\[ \\simplify[fractionnumbers]{matrix:A^(-1)={inverse(a)}} \\]

\n

c)

\n

\\[ \\simplify[fractionnumbers]{matrix:B^(-1)={inverse(b)}} \\]

\n

d)

\n

\\[ \\simplify[fractionnumbers]{matrix:C^(-1)={inverse(c)}} \\]

", "tags": ["checked2015", "determinant of a matrix", "inverse", "inverse matrix", "MAS1602", "matrices", "matrix", "matrix inverse", "matrix multiplication", "multiplication of matrices", "tested1"], "variables": {"tr4": {"name": "tr4", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": ""}, "b": {"name": "b", "templateType": "anything", "group": "Unnamed group", "definition": "matrix([ [b11,b12], [b21,b22] ])", "description": ""}, "c21": {"name": "c21", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": ""}, "c11": {"name": "c11", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,2,4)", "description": ""}, "b21": {"name": "b21", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": ""}, "b11": {"name": "b11", "templateType": "anything", "group": "Ungrouped variables", "definition": "if(a11=tr2,tr2+1,tr2)", "description": ""}, "c22": {"name": "c22", "templateType": "anything", "group": "Ungrouped variables", "definition": "if(tr4*c11=c21*c12,tr4+1,tr4)", "description": ""}, "tr2": {"name": "tr2", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": ""}, "a21": {"name": "a21", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": ""}, "b12": {"name": "b12", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": ""}, "a22": {"name": "a22", "templateType": "anything", "group": "Ungrouped variables", "definition": "if(tr1*a11=a21*a12,tr1+1,tr1)", "description": ""}, "tr1": {"name": "tr1", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": ""}, "c": {"name": "c", "templateType": "anything", "group": "Unnamed group", "definition": "matrix([ [c11,c12], [c21,c22] ])", "description": ""}, "a11": {"name": "a11", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": ""}, "c12": {"name": "c12", "templateType": "anything", "group": "Ungrouped variables", "definition": "a12+b12", "description": ""}, "tr3": {"name": "tr3", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": ""}, "a": {"name": "a", "templateType": "anything", "group": "Unnamed group", "definition": "matrix([ [a11,a12],[a21,a22] ])", "description": ""}, "b22": {"name": "b22", "templateType": "anything", "group": "Ungrouped variables", "definition": "if(tr3*b11=b21*b12,tr3+1,tr3)", "description": ""}, "a12": {"name": "a12", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": ""}}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "notes": "

10/07/2012:

\n

Added tags.

\n

Question appears to be working correctly.

\n

Corrected a typo in the Advice section.

\n

24/12/2012:

\n

Checked calculations, OK. Added tested1 tag.

", "description": "

Find the determinant and inverse of three $2 \\times 2$ invertible matrices.

"}, "functions": {"inverse": {"language": "jme", "type": "matrix", "parameters": [["m", "matrix"]], "definition": "matrix([\n [m[1][1], -m[0][1]],\n [-m[1][0], m[0][0]]\n])/det(m)"}}, "showQuestionGroupNames": false}, {"name": "John's copy of Determinant of 3 x 3 matrices", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}, {"name": "Gemma Crowe", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2440/"}, {"name": "Joseph Clarke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2455/"}], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noleadingminus"]}, "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

Let 
\\[A=\\simplify{{a}},\\;\\; B=\\simplify{{b}},\\;\\; C=\\simplify{{c}}\\]
Calculate the determinants of these matrices:

\n

 

", "functions": {}, "preamble": {"js": "", "css": ""}, "ungrouped_variables": ["a", "q1", "c", "b", "r1", "q", "p", "p1", "apb", "lcab", "lcabc", "p2", "q2", "apb1", "p3", "q3", "apb2", "lcabc2"], "parts": [{"scripts": {}, "customName": "", "showCorrectAnswer": true, "prompt": "

$det(A) = $ [[0]]

", "gaps": [{"allowFractions": false, "maxValue": "det(a)", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "customName": "", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "showFeedbackIcon": true, "useCustomName": false, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "minValue": "det(a)", "marks": "3", "unitTests": [], "variableReplacements": [], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst"}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "sortAnswers": false}, {"scripts": {}, "customName": "", "showCorrectAnswer": true, "prompt": "

$det (B) =$ [[0]]

", "gaps": [{"allowFractions": false, "maxValue": "det(b)", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "customName": "", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "showFeedbackIcon": true, "useCustomName": false, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "minValue": "det(b)", "marks": "3", "unitTests": [], "variableReplacements": [], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst"}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "sortAnswers": false}, {"scripts": {}, "customName": "", "showCorrectAnswer": true, "prompt": "

$det(C) = $ [[0]]

\n

", "gaps": [{"allowFractions": false, "maxValue": "det(C)", "scripts": {}, "correctAnswerStyle": "plain", "showFractionHint": true, "customName": "", "showCorrectAnswer": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "showFeedbackIcon": true, "useCustomName": false, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "minValue": "det(C)", "marks": "3", "unitTests": [], "variableReplacements": [], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst"}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "sortAnswers": false}], "advice": "

The determinant of a 3 x 3 matrix

\n

\\[A = \\begin{pmatrix} a_{11} \\ a_{12} \\ a_{13} \\\\ a_{21} \\ a_{22} \\ a_{23} \\\\ a_{31} \\ a_{32} \\ a_{33}   \\end{pmatrix}\\]

\n

is given by

\n

\\[det(A)  = a_{11}\\left| \\begin{matrix} a_{22} \\ a_{23} \\\\ a_{32} \\ a_{33}\\end{matrix}\\right| - a_{12}\\left| \\begin{matrix} a_{21} \\ a_{23} \\\\ a_{31} \\ a_{33}\\end{matrix}\\right| + a_{13}\\left| \\begin{matrix} a_{21} \\ a_{22} \\\\ a_{31} \\ a_{32}\\end{matrix}\\right|  \\]

\n

\n

This is one way of finding the determinant of a matrix. We can choose any row or column, provided it corresponds with the sign matrix, to calculate the determinant.

\n

\n

\\[\\text{Sign matrix} = \\begin{pmatrix}+ \\ - \\ + \\\\ -\\ + \\ - \\\\ + \\ - \\ + \\end{pmatrix} \\]

\n

\n

For further information see Section 4 of the Chapter 10 Notes. 

\n

", "tags": [], "variables": {"apb": {"name": "apb", "templateType": "anything", "group": "Ungrouped variables", "definition": "a+b", "description": ""}, "lcabc": {"name": "lcabc", "templateType": "anything", "group": "Ungrouped variables", "definition": "p1*a+q1*b-r1*c", "description": ""}, "apb1": {"name": "apb1", "templateType": "anything", "group": "Ungrouped variables", "definition": "p2*a + q2*b", "description": "

apb

"}, "lcab": {"name": "lcab", "templateType": "anything", "group": "Ungrouped variables", "definition": "p*a+q*b", "description": ""}, "r1": {"name": "r1", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..6 except [0,1,-1,p1,q1])", "description": ""}, "q3": {"name": "q3", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6 except p)", "description": ""}, "p3": {"name": "p3", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6 except p)", "description": "

p2

"}, "q2": {"name": "q2", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(-6..6 except [0,1,-1,p])", "description": "

q

"}, "p": {"name": "p", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": ""}, "b": {"name": "b", "templateType": "anything", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-5..5 except 0),3),3))", "description": ""}, "p1": {"name": "p1", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6 except p)", "description": ""}, "apb2": {"name": "apb2", "templateType": "anything", "group": "Ungrouped variables", "definition": "p3*a + q3*b", "description": "

apb

"}, "p2": {"name": "p2", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..10 except p1)", "description": ""}, "q": {"name": "q", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..6 except [0,1,-1,p])", "description": ""}, "c": {"name": "c", "templateType": "anything", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-5..5),3),3))", "description": ""}, "q1": {"name": "q1", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..6 except [0,1,-1,p1,q])", "description": ""}, "lcabc2": {"name": "lcabc2", "templateType": "anything", "group": "Ungrouped variables", "definition": "p1*a+q2*b+q1*c", "description": "

cabc

"}, "a": {"name": "a", "templateType": "anything", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-5..5 except 0) ,3),3))", "description": ""}}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Three examples of determinant of 2x2 matrices.

"}, "variable_groups": [], "type": "question"}]}], "type": "exam", "contributors": [{"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}], "extensions": ["stats"], "custom_part_types": [], "resources": []}