// Numbas version: finer_feedback_settings {"duration": 900, "showQuestionGroupNames": false, "timing": {"timedwarning": {"action": "warn", "message": "

test message 3

"}, "allowPause": true, "timeout": {"action": "warn", "message": "

test message 2

"}}, "question_groups": [{"pickQuestions": 1, "name": "Group", "pickingStrategy": "all-ordered", "questions": [{"name": "Vector addition by summing scalar components", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}], "tags": ["Mechanics", "mechanics", "Statics", "statics", "Vector addition", "vector addition", "Vector Addition"], "metadata": {"description": "

Add three vectors by determining their scalar components, summing them and then resolving the rectangular components to find the magnitude and direction of the resultant

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Three forces act on the bracket at point $A$ as shown:  $\\color{darkgreen}{ \\mathbf{A} = \\var{FA}\\  \\var{units[1]}}$, $\\color{blue}{\\mathbf{B} = \\var{FB}\\ \\var{units[1]}}$ and, $\\color{red}{\\mathbf{C} = \\var{FC}\\ \\var{units[1]}}$.

\n

Find the magnitude and direction of the resultant force $\\mathbf{R}$ by summing scalar components.

\n

{geogebra_applet('btgqdpqx', [['A',A],['B',B],['C',C],['α', radians(mod(alpha,360))]])}

\n

Force A: {fa} at {alpha} = {forceA} 

\n

Force B: {fb} at {beta} = {forceB}

\n

Force C: {fc} at {gamma} = {forceC}

\n

Resultant: {R} at {rho}  = {forceR}

", "advice": "

Vector Addition:  

\n

$R_x = \\Sigma F_x =  (\\var{siground(ForceA[0],4)})  + (\\var{siground(ForceB[0],4)}) +( \\var{siground(ForceC[0],4)}) = \\var{siground(ForceR[0],4)}$ {units[1]}

\n

$R_y = \\Sigma F_y =  (\\var{siground(ForceA[1],4)})  + (\\var{siground(ForceB[1],4)}) +( \\var{siground(ForceC[1],4)}) = \\var{siground(ForceR[1],4)}$ {units[1]}

\n

\n

$ R=\\sqrt{R_x^2 + R_y^2} = \\sqrt{(\\var{siground(ForceR[0],4)})^2 +(\\var{siground(ForceR[0],4)})^2} = \\var{siground(abs(ForceR),4)}$ {units[1]}

\n

\n

$\\theta = \\tan^{-1}\\left(\\left|\\frac{R_y}{R_x}\\right| \\right) = \\tan^{-1}\\left(\\frac{\\var{abs(siground(ForceR[1],4))}}{\\var{abs(siground(ForceR[0],4))}} \\right)  = \\var{siground(degrees(arctan(abs(forceR[1]/forceR[0]))),4)}° \\text{ from the } x \\text{-axis in quadrant } \\var{quadrant(forceR)} \\text{ i.e. }  \\var{siground(rho,4)}° $ from the positive x-axis.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"FC": {"name": "FC", "group": "Inputs", "definition": "random(10..100#5)", "description": "

Magnitude of force C

", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Inputs", "definition": "vector(0,0)", "description": "

Position of point A

", "templateType": "anything", "can_override": false}, "C": {"name": "C", "group": "Inputs", "definition": "vector( random(1,-1) random(6..13),random(1,-1) random(6..9))", "description": "

Position of point C

", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Inputs", "definition": "vector( random(1,-1) random(5..13),random(1,-1) random(5..9))", "description": "

Position of point B

", "templateType": "anything", "can_override": false}, "FA": {"name": "FA", "group": "Inputs", "definition": "random(10..100#5)", "description": "

Magnitude of force A

", "templateType": "anything", "can_override": false}, "debug": {"name": "debug", "group": "Inputs", "definition": "false", "description": "", "templateType": "anything", "can_override": false}, "ForceR": {"name": "ForceR", "group": "Outputs", "definition": "ForceA+ForceB+ForceC", "description": "

Resultant as a vector

", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "Outputs", "definition": "sqrt(ForceR[0]^2+forceR[1]^2)", "description": "

Magnitude of resultant

", "templateType": "anything", "can_override": false}, "ForceC": {"name": "ForceC", "group": "Outputs", "definition": "precround(FC *( vector(cos(radians(gamma)),sin(radians(gamma)))),4)", "description": "

Force C as a vector

", "templateType": "anything", "can_override": false}, "FB": {"name": "FB", "group": "Inputs", "definition": "random(10..100#10)", "description": "

Magnitude of Force B

", "templateType": "anything", "can_override": false}, "rho": {"name": "rho", "group": "Outputs", "definition": "degrees(direction(ForceR))", "description": "

direction of resultant

", "templateType": "anything", "can_override": false}, "beta": {"name": "beta", "group": "Outputs", "definition": "degrees(direction(vector(B[0]-A[0],B[1]-A[1])))", "description": "

Direction of force B

", "templateType": "anything", "can_override": false}, "ForceA": {"name": "ForceA", "group": "Outputs", "definition": "precround(FA *( vector(cos(radians(alpha)),sin(radians(alpha)))),4)", "description": "

force A as a vector

", "templateType": "anything", "can_override": false}, "angle_from_ref": {"name": "angle_from_ref", "group": "Outputs", "definition": "let(ang,rho,\n[if(ang>180,ang-360,ang),\nif(ang>270,ang-450,if(ang < -90,ang+270,ang-90)),\nif(ang>0,ang-180,ang+180),\nif(ang>90,ang-270,90+ang)])", "description": "", "templateType": "anything", "can_override": false}, "gamma": {"name": "gamma", "group": "Outputs", "definition": "degrees(direction(vector(C[0]-A[0],C[1]-A[1])))", "description": "

Direction of force C in degrees

", "templateType": "anything", "can_override": false}, "ForceB": {"name": "ForceB", "group": "Outputs", "definition": "precround(FB *( vector(cos(radians(beta)),sin(radians(beta)))),4)", "description": "

Force B as a vector

", "templateType": "anything", "can_override": false}, "units": {"name": "units", "group": "Inputs", "definition": "random(['ft','lb'],['in','lb'],['cm','N'])", "description": "", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "Inputs", "definition": "random(0..360#5)", "description": "

direction of force A

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(mod(beta,180) - mod(gamma,180)) > 30 and\nabs(mod(beta,180) - mod(alpha,180)) > 30 and\nabs(mod(alpha,180) - mod(gamma,180)) > 30 and\nquadrant(B) <> quadrant(C)\n", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Inputs", "variables": ["A", "B", "C", "alpha", "FA", "FB", "FC", "units", "debug"]}, {"name": "Outputs", "variables": ["ForceA", "beta", "gamma", "ForceB", "ForceC", "ForceR", "rho", "R", "angle_from_ref"]}], "functions": {"direction": {"parameters": [["v", "vector"]], "type": "number", "language": "javascript", "definition": "return Math.atan2(v[1],v[0])"}, "quadrant": {"parameters": [["pt", "vector"]], "type": "anything", "language": "jme", "definition": "let(a,mod(degrees(atan2(pt[1],pt[0])),360),if(a< 90, 1, if(a < 180, 2, (if(a < 270, 3,4)))))"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Components of Components", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the scalar components of the component forces A, B, and C

\n

$A_x =$ [[0]]  $B_x =$ [[2]]  $C_x =$ [[4]]

\n

$A_y =$ [[1]]  $B_y =$ [[3]]  $C_y =$ [[5]]

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "Ax", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(forceA[0],units[1])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "Ay", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(forceA[1],units[1])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "Bx", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(forceB[0],units[1])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "By", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(forceB[1],units[1])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "Cx", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(forceC[0],units[1])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "Cy", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(forceC[1],units[1])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Components of Resultant", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Sum the scalar components to get the scalar components of the resultant R.

\n

$R_x = \\Sigma F_x  = A_x + B_x + C_x =$ [[0]] 

\n

$R_y = \\Sigma F_y  = A_y + B_y + C_y =$ [[1]]  

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "Rx", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(ForceR[0],units[1])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "Ry", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(ForceR[1],units[1])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnitude", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Resolve $R_x$ and $R_y$ to find the magnitude and direction of R.

\n

$R = \\sqrt{{R_x}^2 +{R_y}^2}$ = [[0]] 

\n

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "R", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(R,units[1])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Direction", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "mark:\n if(iscorrect, set_credit(1,\"Correct. \"), set_credit(0, correct_angle))\n\ntarget_angle (the correct angle):\n scalar(gaps[0][\"settings\"][\"correctAnswer\"])\n\nreference (student choice of reference axis: 0,90,180,-90 ):\n answers[2]\n\nanswers0:\n answers[2]\n\nsign (student choice of directions: 1, -1):\n answers[1]\n\nstudent_angle (student input as as standard angle):\n reference + sign * scalar(answers[0])\n\ncorrect_angle:\n \"Correct answer: \" + precround((target_angle-reference)/sign,2) + \"\u00b0 for your selections.\"\n\nisCorrect:\n resultsequal(cos(radians(student_angle)),cos(radians(target_angle)),\"absdiff\", radians(0.1)) and\n resultsequal(sin(radians(student_angle)),sin(radians(target_angle)),\"absdiff\", radians(0.1))\n", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

 $\\theta = \\tan^{-1}\\left(\\left|\\dfrac{R_y}{R_x}\\right| \\right) =$ [[0]] 

\n

measured [[1]] from the [[2]].

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "angle", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "\n", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(rho,\"deg\")", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "dir", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "interpreted_answer:\n [1,-1][indices( studentAnswer,[true])[0]]", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": false, "choices": ["CCW", "CW"], "matrix": [0, 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": true, "customName": "ref", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "interpreted_answer:\n [0,90,180,-90][indices(studentAnswer,[true])[0]]", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": false, "choices": ["Positive x axis", "Positive y axis", "Negative x axis", "Negative y axis"], "matrix": [0, 0, 0, 0], "distractors": ["", "", "", ""]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Perpendicular distance between a point and line", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [["question-resources/perpdist.ggb", "/srv/numbas/media/question-resources/perpdist.ggb"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}], "tags": [], "metadata": {"description": "

Given a point and a line, determine the distance between them.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

{show_triangle(applet,debug)}

\n

Determine the perpendicular distance between point $B$ = ({B[0]}, {B[1]}) and a line passing through point $A$ = ({A[0]}, {A[1]})  with a {rise}:{run} slope.  Grid units are {units}.

\n

d: {siground(d,3)} dperp: {siground(dperp,3) } theta: {siground(degrees(theta),3)} 

\n

", "advice": "
    \n
  1. Draw a diagram showing a triangle with sides that are the perpendicular distance $d_\\perp$ and direct distance $d = \\overline{AB}$. 
  2. \n
  3. Use the distance formula to find the length of segment $\\overline{AB}$.
  4. \n
  5. Use trig to find the angle that segment $AB$ makes with the $x$- or $y$- axis.
  6. \n
  7. Use geometry to determine an angle in the triangle.  Note that the angle that $d_\\perp$ makes with the vertical is the same as the angle that the line makes with the horizontal.  Perpendicular lines have negative reciprocal slopes.
  8. \n
  9. Use trig with the known hypotenuse $d$ and the angle to solve for perpendicular distance $d_\\perp$.
  10. \n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"dperp": {"name": "dperp", "group": "Ungrouped variables", "definition": "abs(cross(r,f))", "description": "

perpendicular distance from B to line

", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "Ungrouped variables", "definition": "arctan(Rise/Run)", "description": "

angle line makes with the horizontal

", "templateType": "anything", "can_override": false}, "debug": {"name": "debug", "group": "Ungrouped variables", "definition": "false", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "abs(A-B)", "description": "

distance from A to B

", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "input", "definition": "vector(random(-6..6),random(-6..6))", "description": "

point on the line

", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "input", "definition": "A + vector(random(-5..5), random(-5..5))", "description": "

the point

", "templateType": "anything", "can_override": false}, "units": {"name": "units", "group": "Ungrouped variables", "definition": "random('in','ft','mm','cm','m')", "description": "", "templateType": "anything", "can_override": false}, "applet": {"name": "applet", "group": "input", "definition": "geogebra_applet('umrzknxw',params)", "description": "", "templateType": "anything", "can_override": false}, "params": {"name": "params", "group": "input", "definition": "[A: A, B: B, Rise: Rise, Run: Run, Z: Z]", "description": "", "templateType": "anything", "can_override": false}, "slopes": {"name": "slopes", "group": "input", "definition": "random([[1,2],[1,3],[1,5],[2,3],[3,4],[5,12]])", "description": "

pick a rise/run ratio for 'nice' choices

", "templateType": "anything", "can_override": false}, "slope": {"name": "slope", "group": "input", "definition": "random([[slopes[0],slopes[1]], [slopes[1],slopes[0]],[-slopes[0],slopes[1]], [-slopes[1],slopes[0]]])", "description": "

permutations of the legal slope

", "templateType": "anything", "can_override": false}, "Rise": {"name": "Rise", "group": "input", "definition": "slope[0]", "description": "

The rise

", "templateType": "anything", "can_override": false}, "Run": {"name": "Run", "group": "input", "definition": "slope[1]", "description": "

The run

", "templateType": "anything", "can_override": false}, "Z": {"name": "Z", "group": "input", "definition": "round(abs(A-B))+1", "description": "

Z sizes the ggb canvas to be large enough to show A and B

", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "A-B + vector(0,0,0)\n", "description": "

3d vector from B to A

", "templateType": "anything", "can_override": false}, "F": {"name": "F", "group": "Ungrouped variables", "definition": "vector(cos(alpha),sin(alpha),0)", "description": "

3d unit vector  for cross product to find angle theta and dperp

\n

(M= F d sin theta = r x F ), but |F|=1 

", "templateType": "anything", "can_override": true}, "theta": {"name": "theta", "group": "Ungrouped variables", "definition": "degrees(angle(f,r))", "description": "

angle between line and segment d   

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "0.2 < dperp/d < 0.8 and // not too close to 0 or 90\u00b0\nd > 3 // not too small", "maxRuns": 100}, "ungrouped_variables": ["d", "dperp", "debug", "units", "r", "alpha", "F", "theta"], "variable_groups": [{"name": "input", "variables": ["A", "B", "applet", "params", "slopes", "slope", "Rise", "Run", "Z"]}], "functions": {"applets": {"parameters": [], "type": "ggbapplet", "language": "javascript", "definition": "// Create the worksheet. \n// This function returns an object with a container `element` and a `promise` resolving to a GeoGebra applet.\nvar params = {\n material_id: 'ptkds8nz'\n};\nvar result = Numbas.extensions.geogebra.createGeogebraApplet(params);\n\n// Once the applet has loaded, run some commands to manipulate the worksheet.\nresult.promise.then(function(d) {\n var app = d.app;\n question.applet = d;\n \n function setGGBPoint(name, nname=name) {\n // moves point in GGB to Numbas value\n var pt = Numbas.jme.unwrapValue(question.scope.getVariable(nname));\n app.setFixed(name,false,false);\n app.setCoords(name, pt[0], pt[1]);\n app.setFixed(name,true,true);\n }\n \n function setGGBAngle(gname, nname=gname) {\n // Sets angle in GGB to a Numbas Variable given in degrees.\n var v = Math.PI / 180 * Numbas.jme.unwrapValue(question.scope.getVariable(nname));\n app.setValue(gname,v);\n } \n \n \n setGGBPoint(\"A\");\n setGGBPoint(\"B\");\n setGGBAngle(\"\u03b1\",\"alpha\");\n \n \n});\n\n// This function returns the result of `createGeogebraApplet` as an object \n// with the JME data type 'ggbapplet', which can be substituted into the question's content.\nreturn new Numbas.jme.types.ggbapplet(result)"}, "show_triangle": {"parameters": [["app", "ggbapplet"], ["v", "boolean"]], "type": "anything", "language": "javascript", "definition": "// Take an applet, set its perspective to the given string.\n// See https://wiki.geogebra.org/en/SetPerspective_Command for the format of the perspective string.\napp.promise.then(function(d) {\n d.app.setVisible(\"construction\", v);\n d.app.setVisible(\"theta\", v);\n});\nreturn new Numbas.jme.types.ggbapplet(app);"}}, "preamble": {"js": "question.signals.on('adviceDisplayed',function() {\n \n try{\n //var app = question.applet.app;\n var app = Numbas.exam.currentQuestion.scope.variables.applet.app;\n app.setVisible(\"construction\", true);\n app.setVisible(\"theta\", true); \n }\n catch(err){} \n})\n\n", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Solutions", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find:

\n

The length of the segment $AB$:

\n

$d = $ [[0]]

\n

The perpendicular distance between the point and the line:

\n

$d_{\\perp} = $ [[1]] 

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "d", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "quantity(abs(d), units)", "right": "0.1", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "dperp", "marks": "20", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "quantity(dperp, units)", "right": "0.1", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Equilibrium of a rigid body: truss", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 12, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/12/edit"}, "name": "Angle quantity 2020", "short_name": "angle", "description": "

Adjusts all angles to 0 < $\\theta$ < 360.

\n

Accepts '°' and 'deg' as units.

\n

Penalizes if not close enough or no units.

\n

90° = -270° = 450°

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings['expected_answer']) ", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "original_student_scalar:\nmatchnumber(studentAnswer,['plain','en'])[1]\n\nstudent_scalar:\nmod(original_student_scalar,360)\n\n\nstudent_unit:\nstudentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]\n\ninterpreted_unit:\nif(trim(student_unit)='\u00b0','deg',student_unit)\n\ninterpreted_answer:\nqty(mod(student_scalar,360),'deg')\n\nclose:\nwithintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))\n\ncorrect_scalar:\nmod(scalar(settings['expected_answer']),360)\n\nright:\nwithintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))\n\ngood_unit:\nsame(qty(1,interpreted_unit),qty(1,'deg'))\n\nmark:\nassert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))", "marking_notes": [{"name": "original_student_scalar", "description": "

Retuns the scalar part of students answer (which is a quantity) as a number.

", "definition": "matchnumber(studentAnswer,['plain','en'])[1]"}, {"name": "student_scalar", "description": "

Normalize angle with mod 360

", "definition": "mod(original_student_scalar,360)\n"}, {"name": "student_unit", "description": "

matchnumber(studentAnswer,['plain','en'])[0] is a string \"12.34\"

", "definition": "studentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]"}, {"name": "interpreted_unit", "description": "

Allows student to use degree symbol or 'deg' for units.

", "definition": "if(trim(student_unit)='\u00b0','deg',student_unit)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(mod(student_scalar,360),'deg')"}, {"name": "close", "description": "", "definition": "withintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))"}, {"name": "correct_scalar", "description": "

Normalize expected_answer with mod 360

", "definition": "mod(scalar(settings['expected_answer']),360)"}, {"name": "right", "description": "", "definition": "withintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))"}, {"name": "good_unit", "description": "", "definition": "same(qty(1,interpreted_unit),qty(1,'deg'))"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "assert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))"}], "settings": [{"name": "expected_answer", "label": "Expected Answer", "help_url": "", "hint": "Expected angle as a quantity.", "input_type": "code", "default_value": "qty(30,'deg')", "evaluate": true}, {"name": "unit_penalty", "label": "Unit penalty", "help_url": "", "hint": "Penalty for not including degree sign or 'deg'.", "input_type": "percent", "default_value": "20"}, {"name": "close_penalty", "label": "Close Penalty", "help_url": "", "hint": "Penalty for close answer.", "input_type": "percent", "default_value": "20"}, {"name": "close_tol", "label": "Close", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked close.   ", "input_type": "code", "default_value": "0.5", "evaluate": false}, {"name": "right_tol", "label": "Right ", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked correct.  ", "input_type": "code", "default_value": "0.1", "evaluate": false}], "public_availability": "restricted", "published": false, "extensions": ["quantities"]}, {"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}], "tags": ["angle from reference", "Equilibrium", "equilibrium", "Mechanics", "mechanics", "reactions", "Rigid Body", "rigid body", "Statics", "statics"], "metadata": {"description": "

Find the reactions of a rigid body (a truss) at a pin and roller.  All loads are either horizontal or vertical.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

{applet}

\n

The truss shown consists of three sections {b} {units[1]} wide and {h} {units[1]} tall, subjected to the loads shown.

\n

Determine the reactions at the pin and the roller.

\n

D: {siground(D,3)} {units[0]}

\n

A:  {siground(magA,3)} {units[0]} at {siground(dirA,4)}° from the x-axis 

\n

Ax: {Ax}  Ay: {Ay} 

", "advice": "
    \n
  1. Draw a free body diagram.
  2. \n
  3. Apply $\\Sigma M_A$ = 0 to find the reaction at $D$.  There's no x-component at $D$, because the support there is a roller.  This should have been indicated on your free body diagram.
  4. \n
  5. Once force $D$ and the loads are known, apply $\\Sigma F_x = 0$ and $\\Sigma F_y=0$ to find components $A_x$ and $A_y$.
  6. \n
  7. With $A_x$ and $A_y$ known, use the pythagorean theorem to calculate the magnitude of force $A$, and use trig to get the its direction.
  8. \n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"Ay": {"name": "Ay", "group": "Ungrouped variables", "definition": "Fe + Ff - D", "description": "

x-component of reaction at A.  up is positive

", "templateType": "anything", "can_override": false}, "FC": {"name": "FC", "group": "inputs", "definition": "random(0..5)", "description": "", "templateType": "anything", "can_override": false}, "dirA": {"name": "dirA", "group": "Ungrouped variables", "definition": "mod(degrees(atan2(Ay,Ax)),360)", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "vector(Ax,Ay)", "description": "", "templateType": "anything", "can_override": false}, "FB": {"name": "FB", "group": "inputs", "definition": "random(0..5)", "description": "", "templateType": "anything", "can_override": false}, "magA": {"name": "magA", "group": "Ungrouped variables", "definition": "abs(A)", "description": "

magnitude of A

", "templateType": "anything", "can_override": false}, "D": {"name": "D", "group": "Ungrouped variables", "definition": "(Fb * h + Fc * h + Ff * b + Fe * 2 * b)/(3*b)", "description": "

Reaction at D.  Up is positive

", "templateType": "anything", "can_override": false}, "FF": {"name": "FF", "group": "inputs", "definition": "random(0..5)", "description": "", "templateType": "anything", "can_override": false}, "Ax": {"name": "Ax", "group": "Ungrouped variables", "definition": "-(Fb+Fc)", "description": "

x- component of reaction at A. positive is to the right

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "inputs", "definition": "random(2..4#0.4)", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "inputs", "definition": "random(2..4#0.2)", "description": "", "templateType": "anything", "can_override": false}, "units": {"name": "units", "group": "inputs", "definition": "['kN','m']", "description": "", "templateType": "anything", "can_override": false}, "FE": {"name": "FE", "group": "inputs", "definition": "random(0..5)", "description": "", "templateType": "anything", "can_override": false}, "debug": {"name": "debug", "group": "GGB", "definition": "false", "description": "", "templateType": "anything", "can_override": false}, "params": {"name": "params", "group": "GGB", "definition": "[\nb: b, h: h,\nF_F: FF, F_E: FE, F_C: FC, F_B: FB,\nunitsF: '\"{units[0]}\"',\nunitsD: '\"{units[1]}\"',\nR_A: [visible: debug], R_D: [visible: debug]\n]", "description": "", "templateType": "anything", "can_override": false}, "applet": {"name": "applet", "group": "GGB", "definition": "geogebra_applet('xqsbgp9c',params)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "len(filter(x>0,x,[Fb,Fc,Fe,Ff]))>1", "maxRuns": 100}, "ungrouped_variables": ["D", "dirA", "Ay", "Ax", "A", "magA"], "variable_groups": [{"name": "inputs", "variables": ["h", "b", "FB", "FC", "FF", "FE", "units"]}, {"name": "GGB", "variables": ["params", "applet", "debug"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Reactions at D", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Use $\\Sigma M_A = 0$ to find the vector components of $\\textbf{D}$. 

\n

$\\textbf{D}_x = $ [[0]]  [[1]]  $\\qquad \\textbf{D}_y = $ [[2]]  [[3]] 

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "Dx Magnitude", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(0,units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "Dx Direction", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["→ (right)", "← (left)", "Neither"], "matrix": [0, 0, "1"], "distractors": ["", "", ""]}, {"type": "engineering-answer", "useCustomName": true, "customName": "Dy Magnitude", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "engineering-answer", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "settings": {"correctAnswer": "qty(abs(D),units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "settings": {"correctAnswer": "qty(abs(D),units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "Dy Direction", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["↑ (up)", "↓ (down)", "Neither"], "matrix": ["if(D>0,1,0)", "if(D<0,1,0)", "If(D=0,1,0)"], "distractors": ["", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Reactions at A", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Use $\\Sigma F_x = 0$ and $\\Sigma F_y=0$ to find the vector components of the reaction at $\\textbf{A}$.

\n

\n

$\\textbf{A}_x = $ [[0]]  [[1]]  $\\qquad \\textbf{A}_y = $ [[2]]  [[3]] 

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "Ax Magnitude", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(abs(Ax),units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "Ax Direction", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["→ (right)", "← (left)", "Neither"], "matrix": "[if(sign(Ax) >= 0,1,0), if(sign(Ax) <=0,1,0), if(sign(Ax)=0,1,0)]"}, {"type": "engineering-answer", "useCustomName": true, "customName": "Ay Magnitude", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(precround(abs(Ay),6),units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "Ay Direction", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["↑ (up)", "↓ (down)", "Neither"], "matrix": "[if(sign(Ay) >= 0,1,0), if(sign(Ay) <=0,1,0), if(sign(Ay)=0,1,0)]"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Resultant at A", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "interpreted_angle: // a qty string corrected to standard angle\n student_angle[2] + student_angle[1] * student_angle[0] + student_units\n\nmagnitude:\n studentAnswer[3]\n\nstudent_angle:\n [mod(matchnumber(studentAnswer[0],['plain','en'])[1],360), // angle\n [1,-1][indices(studentAnswer[1],[true])[0]], // ccw = 1 cw = -1\n [0,90,180,-90][indices(studentAnswer[2],[true])[0]]] // reference axis\n\nstudent_units:\n studentAnswer[0][len(matchnumber(studentAnswer[0],['plain','en'])[0])..len(studentAnswer[0])]\n\ninterpreted_answers:\n [interpreted_angle, studentAnswer[1], studentAnswer[2], studentAnswer[3]]\n\ngap_feedback (Feedback on each of the gaps):\n map(\n try(\n let(\n result, submit_part(gaps[gap_number][\"path\"],answer),\n gap, gaps[gap_number],\n name, gap[\"name\"], \n noFeedbackIcon, not gap[\"settings\"][\"showFeedbackIcon\"],\n assert(name=\"\" or len(gaps)=1,feedback(translate('part.gapfill.feedback header',[\"name\": name])));\n concat_feedback(filter(x[\"op\"]<>\"warning\",x,result[\"feedback\"]), if(marks>0,result[\"marks\"]/marks,1), noFeedbackIcon);\n result\n ),\n err,\n fail(translate(\"part.gapfill.error marking gap\",[\"name\": gaps[gap_number][\"name\"], \"message\": err]))\n ),\n [gap_number,answer,index],\n zip([3,0],[studentAnswer[3], interpreted_angle],[1,2])\n )\n\n", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Determine the magnitude and direction of the resultant force $\\textbf{A}$ by resolving $\\textbf{A}_x$ and  $\\textbf{A}_y$.

\n

Force $\\textbf{A}$ has a magnitude of [[3]],

\n

acting at an angle of [[0]] measured  [[1]] from the [[2]]. 

\n

", "gaps": [{"type": "angle", "useCustomName": true, "customName": "angle", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"expected_answer": "qty(siground(dirA,5),'deg')", "unit_penalty": "20", "close_penalty": "20", "close_tol": "0.5", "right_tol": "0.2"}}, {"type": "1_n_2", "useCustomName": true, "customName": "sign", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["CCW", "CW"], "matrix": [0, 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": true, "customName": "ref", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["+x axis", "+y axis", "-x axis", "-y axis"], "matrix": [0, 0, 0, 0], "distractors": ["", "", "", ""]}, {"type": "engineering-answer", "useCustomName": true, "customName": "magA", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(siground(magA,5),units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "percentPass": "76", "showstudentname": true, "navigation": {"browse": true, "onleave": {"action": "warnifunattempted", "message": "

test message

"}, "showfrontpage": true, "showresultspage": "oncompletion", "preventleave": true, "startpassword": "", "allowregen": true, "reverse": true}, "metadata": {"licence": "None specified", "description": "description test message
"}, "name": "test exam", "feedback": {"allowrevealanswer": true, "intro": "

introduction test message

", "showactualmark": true, "feedbackmessages": [{"threshold": "51", "message": "

feedback test message

"}], "advicethreshold": 0, "showtotalmark": true, "showanswerstate": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "type": "exam", "contributors": [{"name": "Kathryn Jackson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3439/"}], "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 12, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/12/edit"}, "name": "Angle quantity 2020", "short_name": "angle", "description": "

Adjusts all angles to 0 < $\\theta$ < 360.

\n

Accepts '°' and 'deg' as units.

\n

Penalizes if not close enough or no units.

\n

90° = -270° = 450°

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings['expected_answer']) ", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "original_student_scalar:\nmatchnumber(studentAnswer,['plain','en'])[1]\n\nstudent_scalar:\nmod(original_student_scalar,360)\n\n\nstudent_unit:\nstudentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]\n\ninterpreted_unit:\nif(trim(student_unit)='\u00b0','deg',student_unit)\n\ninterpreted_answer:\nqty(mod(student_scalar,360),'deg')\n\nclose:\nwithintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))\n\ncorrect_scalar:\nmod(scalar(settings['expected_answer']),360)\n\nright:\nwithintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))\n\ngood_unit:\nsame(qty(1,interpreted_unit),qty(1,'deg'))\n\nmark:\nassert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))", "marking_notes": [{"name": "original_student_scalar", "description": "

Retuns the scalar part of students answer (which is a quantity) as a number.

", "definition": "matchnumber(studentAnswer,['plain','en'])[1]"}, {"name": "student_scalar", "description": "

Normalize angle with mod 360

", "definition": "mod(original_student_scalar,360)\n"}, {"name": "student_unit", "description": "

matchnumber(studentAnswer,['plain','en'])[0] is a string \"12.34\"

", "definition": "studentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]"}, {"name": "interpreted_unit", "description": "

Allows student to use degree symbol or 'deg' for units.

", "definition": "if(trim(student_unit)='\u00b0','deg',student_unit)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(mod(student_scalar,360),'deg')"}, {"name": "close", "description": "", "definition": "withintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))"}, {"name": "correct_scalar", "description": "

Normalize expected_answer with mod 360

", "definition": "mod(scalar(settings['expected_answer']),360)"}, {"name": "right", "description": "", "definition": "withintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))"}, {"name": "good_unit", "description": "", "definition": "same(qty(1,interpreted_unit),qty(1,'deg'))"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "assert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))"}], "settings": [{"name": "expected_answer", "label": "Expected Answer", "help_url": "", "hint": "Expected angle as a quantity.", "input_type": "code", "default_value": "qty(30,'deg')", "evaluate": true}, {"name": "unit_penalty", "label": "Unit penalty", "help_url": "", "hint": "Penalty for not including degree sign or 'deg'.", "input_type": "percent", "default_value": "20"}, {"name": "close_penalty", "label": "Close Penalty", "help_url": "", "hint": "Penalty for close answer.", "input_type": "percent", "default_value": "20"}, {"name": "close_tol", "label": "Close", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked close.   ", "input_type": "code", "default_value": "0.5", "evaluate": false}, {"name": "right_tol", "label": "Right ", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked correct.  ", "input_type": "code", "default_value": "0.1", "evaluate": false}], "public_availability": "restricted", "published": false, "extensions": ["quantities"]}, {"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [["question-resources/perpdist.ggb", "/srv/numbas/media/question-resources/perpdist.ggb"]]}