// Numbas version: finer_feedback_settings {"name": "07. Moment of a Force", "metadata": {"description": "

Homework set.  Determine the moment of a force using the definition of the moment, $M = F d_\\perp$.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", ""], "variable_overrides": [[], [], [], []], "questions": [{"name": "Moment: Semicircle", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}], "tags": ["mechanics", "Mechanics", "moment", "Moment", "Statics", "statics"], "metadata": {"description": "

Calculate the moment of a force.  Must calculate perpendicular distance based on simple geometry, and recognize direction.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

{applet}

\n

A {qty(F,units[0])} force is applied semi circular object with a {qty(r, units[1])} radius, as shown.

\n

", "advice": "

Given:  $r = \\var{qty(r,units[1])}, F = \\var{qty(F,units[0])}$

\n

$d_\\perp = r  \\var{latex(if(alpha < 0,\"-\",\"+\"))} r \\sin ( \\var{abs(alpha)}°) = \\var{qty(siground(dperp,4),units[1])}$

\n

$M = F d_\\perp  = (\\var{qty(F,units[0])})(\\var{qty(siground(dperp,4),units[1])}) = \\var{M}$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"phi": {"name": "phi", "group": "Ungrouped variables", "definition": "random([0,180])", "description": "

angle force makes with horizontal

", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "Ungrouped variables", "definition": "random(-40..40#10 except 0)", "description": "

angle diameter makes with horizontal

", "templateType": "anything", "can_override": false}, "units": {"name": "units", "group": "Ungrouped variables", "definition": "random(['N','cm', 'N*cm'],['lb','in','in*lb'], ['N','mm', 'N*mm'])", "description": "", "templateType": "anything", "can_override": false}, "F": {"name": "F", "group": "Ungrouped variables", "definition": "random(10..100#5)", "description": "", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "random(10..50#5)", "description": "", "templateType": "anything", "can_override": false}, "dperp": {"name": "dperp", "group": "solution", "definition": "r + r sin(radians(alpha))", "description": "", "templateType": "anything", "can_override": false}, "M": {"name": "M", "group": "solution", "definition": "siground(qty(F dperp ,units[2]),4)", "description": "", "templateType": "anything", "can_override": false}, "applet": {"name": "applet", "group": "ggb", "definition": "geogebra_applet('jwzzemtp',params)", "description": "", "templateType": "anything", "can_override": false}, "params": {"name": "params", "group": "ggb", "definition": "[\nphi: [definition: radians(phi),visible: false], \nalpha:[definition: radians(alpha), visible: false],\nshow: [definition: 'false', visible: 0]\n]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["phi", "alpha", "units", "F", "r"], "variable_groups": [{"name": "solution", "variables": ["dperp", "M"]}, {"name": "ggb", "variables": ["applet", "params"]}], "functions": {"evalCommand": {"parameters": [["app", "ggbapplet"], ["cmd", "string"]], "type": "anything", "language": "javascript", "definition": "// Take an applet, evaluate a ggb command\napp.promise.then(function(d) {\n d.app.evalCommand(cmd);\n});\nreturn new Numbas.jme.types.ggbapplet(app);"}}, "preamble": {"js": "question.signals.on('adviceDisplayed',function() {\n try{\n var app = question.scope.variables.applet.app;\n \n app.setValue(\"show\", true, false);\n \n }\n catch(err){} \n})\n\n", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Determine the moment force $F$ makes about a point at the origin.

\n

$M =$ [[0]] [[1]]

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "Magnitude", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "M", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "Direction", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["CCW", "CW"], "matrix": ["if(phi=180,5,0)", "if(phi=0,5,0)"], "distractors": ["", ""]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Moment of a force about a point", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}], "tags": ["2-D", "2-d", "Mechanics", "mechanics", "Moment", "moment", "Perpendicular distance", "perpendicular distance", "Statics", "statics"], "metadata": {"description": "

Determine the moment of a force about a point by using $M= F d_\\perp$ or $M = F_\\perp d$.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

{applet}

\n

A $\\var{scalar(f)}$ lb force $\\mathbf{F}$ is applied to the control rod $AB$ as shown. Knowing that the length of the rod is $\\var{d}$ and that $\\alpha$ is {alpha}°, determine the component of $\\mathbf{F}$ perpendicular to rod $AB$ and the magnitude of the moment produced.

\n

\n

A $\\var{scalar(f)}$ lb force $\\mathbf{F}$ is applied to the control rod $AB$ as shown. Knowing that the length of the rod is $\\var{d}$ and that $\\alpha$ is {alpha}°, determine the perpendicular distance from the line of action of force $\\mathbf{F}$ to point $B$and the magnitude of the moment produced.

\n

\n

Force $\\mathbf{F}$ is applied to the $\\var{d}$ long control rod $AB$ at angle $\\alpha$ = {alpha}° as shown.  Knowing that it creates a {siground(scalar(M),4)} in lb {direction} moment about point B, determine the perpendicular distance from the line of action of force $\\mathbf{F}$ to point $B$, and the magnitude of force $\\mathbf{F}$.

\n

\n

A {scalar(f)} lb force $\\mathbf{F}$ is applied to control rod $AB$ at angle $\\alpha$ = {alpha}° as shown. Knowing that it creates a {siground(scalar(M),4)} in lb {direction} moment about point $B$ , determine the length of the control rod, and the component of $\\mathbf{F}$ in a direction perpendicular to $AB$ .

\n

\n

A {scalar(f)} lb force $\\mathbf{F}$ is applied to the {scalar(d)} inch long control rod $AB$ as shown. Knowing that it creates a {siground(scalar(M),4)} in lb {direction} moment about point $B$ , determine angle $\\alpha$ and the perpendicular distance between the line of action of force $\\mathbf{F}$ and point $B$ .

\n
\n

F: {F} D:{D} $\\alpha$: {alpha} $F_\\perp$: {fperp} $d_\\perp$: {dperp} M: {M}

\n
\n

\n

\n

", "advice": "

{advice}

\n

Method 1

\n
    \n
  1. Draw the line of action of the force.
  2. \n
  3. Make a triangle including the perpendicular distance $d_\\perp.$
  4. \n
  5. Use geometry to find an angle in the triangle.
  6. \n
  7. Use trig to find the value of the perpendicular distance.
  8. \n
  9. Apply equation $M=F d_\\perp = F(d sin \\alpha) $  to solve for the unknown quantity.
  10. \n
\n

Method 2

\n
    \n
  1. Use geometry to find the angle between the force and the control rod.
  2. \n
  3. Identify and solve for the component of force $F$ perpendicular to the control rod, $F_\\perp$  .
  4. \n
  5. Apply equation $M = F_\\perp d = (F sin \\alpha) d $ to solve for the unknown quantity.  
  6. \n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"alpha'": {"name": "alpha'", "group": "Inputs", "definition": "random(-150..150#5 except [0,5,10,90,-5,-10,-90])", "description": "

angle of force with respect to the bar.

", "templateType": "anything", "can_override": false}, "Fperp": {"name": "Fperp", "group": "results", "definition": "M/D", "description": "

The perpendicular component of the force.

", "templateType": "anything", "can_override": false}, "version": {"name": "version", "group": "display", "definition": "random(0..4)", "description": "

which question version?

", "templateType": "anything", "can_override": false}, "direction": {"name": "direction", "group": "results", "definition": "if(alpha'<180,'clockwise','counterclockwise')", "description": "", "templateType": "anything", "can_override": false}, "Dperp": {"name": "Dperp", "group": "results", "definition": "M/F", "description": "

The perpendicular distance.

", "templateType": "anything", "can_override": false}, "F": {"name": "F", "group": "Inputs", "definition": "siground(qty(random(10..150)*random(0.1,0.5,1),'lb'),4)", "description": "

Magnitude of the force.

", "templateType": "anything", "can_override": false}, "debug": {"name": "debug", "group": "display", "definition": "false", "description": "", "templateType": "anything", "can_override": false}, "beta": {"name": "beta", "group": "display", "definition": "if(beta'>90,180-beta',beta')", "description": "", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "display", "definition": "if(abs(alpha')>90,(180-abs(alpha')),abs(alpha'))", "description": "

Angle alpha as shown on the diagram, always less than 90°.

", "templateType": "anything", "can_override": false}, "answers": {"name": "answers", "group": "display", "definition": "[['$F_\\\\perp$', Fperp , '$M$', M],\n\n['$d_\\\\perp$', Dperp, '$M$', M ],\n\n['$d_\\\\perp$',Dperp, '$F$', F],\n\n['$\\\\ell$', D, '$F_\\\\perp$', Fperp],\n\n['$\\\\alpha$',qty(alpha,'deg'), '$d_\\\\perp$',Dperp]]\n", "description": "

labels, gap answer, and units

", "templateType": "anything", "can_override": false}, "beta'": {"name": "beta'", "group": "Inputs", "definition": "random(20..160#10 except 90)", "description": "

angle of bar from positive x axis

", "templateType": "anything", "can_override": false}, "M": {"name": "M", "group": "results", "definition": "siground(sin(radians(alpha)),5) * ( F * D )", "description": "

The magnitude of the moment

", "templateType": "anything", "can_override": false}, "D": {"name": "D", "group": "Inputs", "definition": "qty(random(6..30#2),'in')", "description": "

Length of the bar AB.

", "templateType": "anything", "can_override": false}, "applet": {"name": "applet", "group": "ggb", "definition": "geogebra_applet('tvby7hmg', params)", "description": "", "templateType": "anything", "can_override": false}, "params": {"name": "params", "group": "ggb", "definition": "['\u03b1\\'': radians(alpha'), '\u03b2\\'': radians(beta'), \nshow1: [visible: false], show2: [visible: false]]", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "ggb", "definition": "showAdvice(geogebra_applet('tvby7hmg', params))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Inputs", "variables": ["beta'", "alpha'", "D", "F"]}, {"name": "results", "variables": ["M", "Fperp", "Dperp", "direction"]}, {"name": "display", "variables": ["alpha", "beta", "version", "answers", "debug"]}, {"name": "ggb", "variables": ["applet", "params", "advice"]}], "functions": {"showAdvice": {"parameters": [["app", "ggbapplet"]], "type": "anything", "language": "javascript", "definition": "// see https://wiki.geogebra.org/en/Reference:GeoGebra_Apps_API for other commands\n\napp.promise.then(function(d) {\n d.app.setVisible('show1', true);\n d.app.setVisible('show2', true);\n d.app.setValue('show1', true);\n d.app.setCaption('\u03b1', '$%v$');\n});\nreturn new Numbas.jme.types.ggbapplet(app);\n"}}, "preamble": {"js": "//question.signals.on('adviceDisplayed',function() {\n\n//try{\n// var app = question.scope.variables.applet.app; \n// app.setVisible('show1', true);\n// app.setVisible('show2', true);\n// app.setValue('show1', true);\n// app.setCaption('\u03b1', '$%v$');\n// }\n// catch(err){} \n//})\n\n\n", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Answers", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{answers[version][0]} = [[0]]  $\\qquad$ {answers[version][2]} = [[1]]

\n

\n

\n

{answers[version][1]}

\n

{answers[version][3]}

", "gaps": [{"type": "engineering-answer", "useCustomName": false, "customName": "", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "answers[version][1]", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": false, "customName": "", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "answers[version][3]", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Moment of a Force: using the definition of a moment", "extensions": ["geogebra", "quantities", "weh"], "custom_part_types": [{"source": {"pk": 24, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/24/edit"}, "name": "Angle quantity", "short_name": "angle-quantity-from-reference", "description": "

Angle as a quantity in degrees.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings['correct_quantity'])", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \nright and good_units and right_sign and angle_in_range, add_credit(1.0,'Correct.'),\nright and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\nright and right_sign and not good_units, add_credit(settings['C2'],'Correct angle, but missing degree symbol.'),\nright and good_units and right_sign and not angle_in_range,add_credit(settings['C1'],'Angle is out of range.'),\nclose and good_units, add_credit(settings['C1'],'Close.'),\nclose and not good_units, add_credit(settings['C3'],'Answer is close, but missing degree symbol.'),\nincorrect('Wrong answer.')\n)\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\ncorrect_scalar:\nscalar(correct_quantity)\n \n\ncorrect_quantity:\nsettings['correct_quantity']\n\ncorrect_units:\nunits(correct_quantity)\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\njoin(\nsplit(studentAnswer[len(match_student_number[0])..len(studentAnswer)]\n,\"\u00b0\"),\" deg\")\n\n\n\ngood_units:\ntry(\nkind(quantity(1, student_units))= kind(correct_quantity),\nmsg,\nfeedback(msg);false)\n\nstudent_quantity:\nswitch(not good_units, \nstudent_scalar * correct_units, \nnot right_sign,\n-quantity(student_scalar, student_units),\nquantity(student_scalar,student_units)\n)\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)\n\nangle_in_range:\nif(settings['restrict_angle'], abs(student_scalar) <= 90, true)\n\nright:\nwithinTolerance(abs(student_scalar), abs(correct_scalar), settings['right'])\n\nclose:\nwithinTolerance(student_scalar, correct_scalar, settings['close'])", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \nright and good_units and right_sign and angle_in_range, add_credit(1.0,'Correct.'),\nright and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\nright and right_sign and not good_units, add_credit(settings['C2'],'Correct angle, but missing degree symbol.'),\nright and good_units and right_sign and not angle_in_range,add_credit(settings['C1'],'Angle is out of range.'),\nclose and good_units, add_credit(settings['C1'],'Close.'),\nclose and not good_units, add_credit(settings['C3'],'Answer is close, but missing degree symbol.'),\nincorrect('Wrong answer.')\n)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)"}, {"name": "correct_scalar", "description": "", "definition": "scalar(correct_quantity)\n "}, {"name": "correct_quantity", "description": "", "definition": "settings['correct_quantity']"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "", "definition": "join(\nsplit(studentAnswer[len(match_student_number[0])..len(studentAnswer)]\n,\"\u00b0\"),\" deg\")\n\n"}, {"name": "good_units", "description": "", "definition": "try(\nkind(quantity(1, student_units))= kind(correct_quantity),\nmsg,\nfeedback(msg);false)"}, {"name": "student_quantity", "description": "", "definition": "switch(not good_units, \nstudent_scalar * correct_units, \nnot right_sign,\n-quantity(student_scalar, student_units),\nquantity(student_scalar,student_units)\n)"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity)"}, {"name": "angle_in_range", "description": "", "definition": "if(settings['restrict_angle'], abs(student_scalar) <= 90, true)"}, {"name": "right", "description": "

Will check for correct sign elswhere.

", "definition": "withinTolerance(abs(student_scalar), abs(correct_scalar), settings['right'])"}, {"name": "close", "description": "

Must have correct sign to be close.

", "definition": "withinTolerance(student_scalar, correct_scalar, settings['close'])\n"}], "settings": [{"name": "correct_quantity", "label": "Correct Angle as quantity ", "help_url": "", "hint": "", "input_type": "code", "default_value": "qty(45,'deg')", "evaluate": true}, {"name": "right", "label": "Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within ± this amount from the correct value.", "input_type": "code", "default_value": "0.1", "evaluate": true}, {"name": "restrict_angle", "label": "Less than 90\u00b0", "help_url": "", "hint": "When checked, angle must be between -90° and +90°.", "input_type": "checkbox", "default_value": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.", "input_type": "percent", "default_value": "75"}, {"name": "close", "label": " Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within ± this amount from the correct value.", "input_type": "code", "default_value": "0.5", "evaluate": true}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value without units.", "input_type": "percent", "default_value": "25"}], "public_availability": "restricted", "published": false, "extensions": ["quantities"]}, {"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}], "tags": [], "metadata": {"description": "

Calculate the moment of a force about three points using the definition of a Moment.  All forces and points are in the same plane.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Force $\\mathbf{F}$, which has a magnitude of {F}, acts along a line passing through points $D$ and $D'$.   The grid units are in [{units[0]}] and counter-clockwise moments are positive.  Determine the moment of the force about points $A$,  and $B$ using the definition of the moment:

\n

$M = F \\cdot d_\\perp$.

\n

{applet}

", "advice": "

Step a) walks you through the procedure to find a moment using the definition of the moment.

\n

An alternate approach is to use Verignon's Theorem

\n

Verigon's theorem says that the moment of a force is the sum of the moments of its components.

\n

$ M = \\pm F_x d_y \\pm F_y d_x$

\n

Procedure:

\n
    \n
  1. Decompose force F into its x- and y-components.
  2. \n
  3. Determine the horizontal and vertical distances from the moment center to a point on the line of action of F.  In this problem:\n
      \n
    1. $d_x$ is the horizontal distance from D (or D') to A, B, or C.
    2. \n
    3. $d_y$ is the vertical distance from D (or D') to A, B, or C.
    4. \n
    \n
  4. \n
  5. The moments of the components are $F_x d_y$ and $F_y d_x$.
  6. \n
  7. The signs of these moments are determined by inspection:  positive if counter-clockwise, negative if clockwise.
  8. \n
  9. The total moment is the sum of the component moments.
  10. \n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"dir_c": {"name": "dir_c", "group": "Ungrouped variables", "definition": "if(sign(MC)>=0,1,-1)", "description": "", "templateType": "anything", "can_override": false}, "Mc": {"name": "Mc", "group": "Ungrouped variables", "definition": "qty(cross(rc,force)[2], units[0] + ' ' + units[1])", "description": "", "templateType": "anything", "can_override": false}, "dperp_b": {"name": "dperp_b", "group": "Ungrouped variables", "definition": "abs(MB/F)", "description": "", "templateType": "anything", "can_override": false}, "Ma": {"name": "Ma", "group": "Ungrouped variables", "definition": "qty(cross(ra,force)[2], units[0] + ' ' + units[1])\n", "description": "", "templateType": "anything", "can_override": false}, "My": {"name": "My", "group": "Ungrouped variables", "definition": "qty(\n siground(cross(ra,vector(0,force[1],0))[2],4),\n units[0] + ' ' + units[1])\n\n", "description": "", "templateType": "anything", "can_override": false}, "MA'": {"name": "MA'", "group": "definition method", "definition": "qty(abs(force),units[1]) * dperp", "description": "", "templateType": "anything", "can_override": false}, "D'": {"name": "D'", "group": "Inputs", "definition": "vector(random(-8..8),random(-8..8))", "description": "

Point D' on loa

", "templateType": "anything", "can_override": false}, "C": {"name": "C", "group": "Inputs", "definition": "vector(random(-8..8),random(-8..8))", "description": "

point C

", "templateType": "anything", "can_override": false}, "sum": {"name": "sum", "group": "Ungrouped variables", "definition": "Mx-My", "description": "", "templateType": "anything", "can_override": false}, "Mx": {"name": "Mx", "group": "Ungrouped variables", "definition": "qty(\n siground(cross(ra,vector(force[0],0,0))[2],4),\n units[0] + ' ' + units[1])\n\n", "description": "

Moment of F_x about point A

", "templateType": "anything", "can_override": false}, "dperp_c": {"name": "dperp_c", "group": "Ungrouped variables", "definition": "abs(MC/F)", "description": "", "templateType": "anything", "can_override": false}, "Fy": {"name": "Fy", "group": "Ungrouped variables", "definition": "qty(force[1],units[1])", "description": "", "templateType": "anything", "can_override": false}, "rc": {"name": "rc", "group": "Ungrouped variables", "definition": "D-C+vector(0,0,0)\n", "description": "

position vector

", "templateType": "anything", "can_override": false}, "rb": {"name": "rb", "group": "Ungrouped variables", "definition": "D-B+vector(0,0,0)\n", "description": "

position vector

", "templateType": "anything", "can_override": false}, "ra": {"name": "ra", "group": "Ungrouped variables", "definition": "D-A+vector(0,0,0)", "description": "

position vector

", "templateType": "anything", "can_override": false}, "units": {"name": "units", "group": "Inputs", "definition": "random(['in','lb'],['ft','lb'],['m','N'],['m','kN'])", "description": "", "templateType": "anything", "can_override": false}, "dperp_a": {"name": "dperp_a", "group": "Ungrouped variables", "definition": "abs(MA/F)", "description": "", "templateType": "anything", "can_override": false}, "dir_b": {"name": "dir_b", "group": "Ungrouped variables", "definition": "if(sign(MB)>=0,1,-1)", "description": "", "templateType": "anything", "can_override": false}, "Mb": {"name": "Mb", "group": "Ungrouped variables", "definition": "qty(cross(rb,force)[2], units[0] + ' ' + units[1])", "description": "", "templateType": "anything", "can_override": false}, "theta_A": {"name": "theta_A", "group": "definition method", "definition": "let( ang,degrees(arccos((dot(ra,force)/abs(ra)/abs(force)))),if(ang<90,ang,180-ang))", "description": "", "templateType": "anything", "can_override": false}, "force": {"name": "force", "group": "Ungrouped variables", "definition": "scalar(F)(D'-D)/abs(D'-D) + vector(0,0,0)\n", "description": "

\n

Vector Force  = F λ

\n

λ = (D'-D)/abs(D'-D)

", "templateType": "anything", "can_override": false}, "Fx": {"name": "Fx", "group": "Ungrouped variables", "definition": "qty(force[0],units[1])", "description": "", "templateType": "anything", "can_override": false}, "test": {"name": "test", "group": "definition method", "definition": "siground(dperp,4)", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Inputs", "definition": "vector(random(-8..8),random(-8..8))", "description": "

point A

", "templateType": "anything", "can_override": false}, "D": {"name": "D", "group": "Inputs", "definition": "vector(random(-8..8),random(-8..8))", "description": "

Point D

", "templateType": "anything", "can_override": false}, "debug": {"name": "debug", "group": "Inputs", "definition": "false", "description": "", "templateType": "anything", "can_override": false}, "dir_a": {"name": "dir_a", "group": "Ungrouped variables", "definition": "if(sign(MA)>=0,1,-1)", "description": "

replacement variable for direction of moment.

", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Inputs", "definition": "vector(random(-8..8),random(-8..8))", "description": "

point B

", "templateType": "anything", "can_override": false}, "AD": {"name": "AD", "group": "definition method", "definition": "qty(abs(A-D),units[0])", "description": "", "templateType": "anything", "can_override": false}, "F": {"name": "F", "group": "Inputs", "definition": "qty(random(1..5)random(1,2,5,10,20),units[1])", "description": "

Magnitude of force F

", "templateType": "anything", "can_override": false}, "dperp": {"name": "dperp", "group": "definition method", "definition": "AD sin(radians(theta_a))", "description": "", "templateType": "anything", "can_override": false}, "applet": {"name": "applet", "group": "Ungrouped variables", "definition": "geogebra_applet('n8thnjk7',params)\n", "description": "", "templateType": "anything", "can_override": false}, "params": {"name": "params", "group": "Ungrouped variables", "definition": "[A: A, B: B, C: C, D: D, D': D', F: scalar(F)]\n\n", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "// makes sure that no point aligns vertically or horizontally with another\nnot some(map(p[0]=q[0] or p[1]=q[1],[p,q],combinations([A,B,C,D,D'],2)))\nand sign(Ma)<>sign(Mc)\nand theta_A > 15\nand all(map(scalar(d)>=1,d,[dperp_a,dperp_b,dperp_c]))", "maxRuns": 100}, "ungrouped_variables": ["ra", "rb", "rc", "force", "Mx", "My", "Ma", "Mb", "Mc", "sum", "Fx", "Fy", "dir_a", "dir_b", "dir_c", "dperp_a", "dperp_b", "dperp_c", "applet", "params"], "variable_groups": [{"name": "Inputs", "variables": ["A", "B", "C", "D", "D'", "F", "units", "debug"]}, {"name": "definition method", "variables": ["theta_A", "AD", "dperp", "MA'", "test"]}, {"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Geometry", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the length of the line segment from $A$ to $D$.   (Or any other point on the line of action of F.)

\n

$d$ = [[0]]  {qty(siground(abs(A-D),4),units[0]) }

\n

Find the angle (<= 90°) between segment $\\overline{AD}$ and the line of action of F.

\n

$\\theta_A =$ [[1]]  {qty(siground(theta_A,4),'deg') }

\n

Find the perpendicular distance between point $A$ and the line of action of force F.

\n

$d_\\perp =$ [[2]]   {siground(dperp,4)}

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "AD", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "AD", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "angle-quantity-from-reference", "useCustomName": true, "customName": "$\u03b8_A$", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correct_quantity": "siground(qty(theta_A,'deg'),4)", "right": "0.2", "restrict_angle": true, "C1": "75", "close": "1.0", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "$d_\u27c2$", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "dperp", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "$M_A$", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Use the definition of the moment $M_A = F \\cdot d_\\perp$ to find the moment of F about A.

\n

$\\textbf{M}_A$ is a [[0]] moment with a magnitude of [[1]].

\n

$M_A$= {siground(Ma,4)}  

", "gaps": [{"type": "1_n_2", "useCustomName": true, "customName": "direction", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Counterclockwise", "Clockwise"], "matrix": ["if(dir_a=1,2,0)", "if(dir_a=-1,2,0)"], "distractors": ["You chose Counterclockwise", "You chose Clockwise."]}, {"type": "engineering-answer", "useCustomName": true, "customName": "$M_A$", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "abs(Ma)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "$M_B$", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

In the same way, determine the moment of force F about point B.    

\n

$\\textbf{M}_B$ is a [[0]] moment with a magnitude of [[1]].

\n

$M_b$= {siground(Mb,4)}  

", "gaps": [{"type": "1_n_2", "useCustomName": true, "customName": "direction", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Counterclockwise", "Clockwise"], "matrix": ["if(dir_b=1,2,0)", "if(dir_b=-1,2,0)"], "distractors": ["You chose Counterclockwise", "You chose Clockwise."]}, {"type": "engineering-answer", "useCustomName": true, "customName": "$M_B$", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "abs(Mb)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Moment Balance: see-saw", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}], "tags": ["Mechanics", "mechanics", "moment balance", "Statics", "statics"], "metadata": {"description": "

Find the force required to balance a see-saw.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

{geogebra_applet('yjqkjgp9',[\"A\": A, \"C\": C, \"theta\": theta +\"°\"])} 

\n

{L} long rigid beam $ABC$ pivots on a frictionless pin at $B$.   Segment $AB$ is {AB} long.

", "advice": "

Given:

\n

$d_1 = \\var{AB}, d_2 = L - d_1 = \\var{L-AB}, $

\n

$A = \\var{FA}, \\theta = \\var{if(theta < 90, theta, 180-theta)}° $

\n

For rotational equilibrium:

\n

 $\\sum M_B = 0$

\n

$A \\; d_1 = C \\sin \\theta \\; d_2$

\n

$C = \\dfrac{A d_1}{d_2 \\sin \\theta} = \\var{siground(FC,5)}$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"A": {"name": "A", "group": "Ungrouped variables", "definition": "vector(-random(2..8),0)", "description": "", "templateType": "anything", "can_override": false}, "C": {"name": "C", "group": "Ungrouped variables", "definition": "vector(random(2..8),0)", "description": "", "templateType": "anything", "can_override": false}, "L": {"name": "L", "group": "derived", "definition": "AB+BC", "description": "", "templateType": "anything", "can_override": false}, "theta": {"name": "theta", "group": "Ungrouped variables", "definition": "random(20..160#10 except 90)", "description": "", "templateType": "anything", "can_override": false}, "AB": {"name": "AB", "group": "derived", "definition": "qty(-A[0],'ft')", "description": "", "templateType": "anything", "can_override": false}, "BC": {"name": "BC", "group": "derived", "definition": "qty(C[0],'ft')", "description": "", "templateType": "anything", "can_override": false}, "FA": {"name": "FA", "group": "Ungrouped variables", "definition": "qty(random(50..500#25),'lb')", "description": "

force A

", "templateType": "anything", "can_override": false}, "FC": {"name": "FC", "group": "derived", "definition": " AB FA / BC /sin(radians(theta))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "L >= qty(10,'ft') and\nAB <> BC", "maxRuns": 100}, "ungrouped_variables": ["A", "C", "theta", "FA"], "variable_groups": [{"name": "derived", "variables": ["L", "AB", "BC", "FC"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Determine the magnitude of force $\\mathbf{C}$ required for rotational equilibrium if the magnitude of force $\\mathbf{A}$ is {FA}.

\n

$C=$ [[0]]

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "$C$", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "FC", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": false, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}], "extensions": ["geogebra", "quantities", "weh"], "custom_part_types": [{"source": {"pk": 24, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/24/edit"}, "name": "Angle quantity", "short_name": "angle-quantity-from-reference", "description": "

Angle as a quantity in degrees.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings['correct_quantity'])", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \nright and good_units and right_sign and angle_in_range, add_credit(1.0,'Correct.'),\nright and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\nright and right_sign and not good_units, add_credit(settings['C2'],'Correct angle, but missing degree symbol.'),\nright and good_units and right_sign and not angle_in_range,add_credit(settings['C1'],'Angle is out of range.'),\nclose and good_units, add_credit(settings['C1'],'Close.'),\nclose and not good_units, add_credit(settings['C3'],'Answer is close, but missing degree symbol.'),\nincorrect('Wrong answer.')\n)\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\ncorrect_scalar:\nscalar(correct_quantity)\n \n\ncorrect_quantity:\nsettings['correct_quantity']\n\ncorrect_units:\nunits(correct_quantity)\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\njoin(\nsplit(studentAnswer[len(match_student_number[0])..len(studentAnswer)]\n,\"\u00b0\"),\" deg\")\n\n\n\ngood_units:\ntry(\nkind(quantity(1, student_units))= kind(correct_quantity),\nmsg,\nfeedback(msg);false)\n\nstudent_quantity:\nswitch(not good_units, \nstudent_scalar * correct_units, \nnot right_sign,\n-quantity(student_scalar, student_units),\nquantity(student_scalar,student_units)\n)\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)\n\nangle_in_range:\nif(settings['restrict_angle'], abs(student_scalar) <= 90, true)\n\nright:\nwithinTolerance(abs(student_scalar), abs(correct_scalar), settings['right'])\n\nclose:\nwithinTolerance(student_scalar, correct_scalar, settings['close'])", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \nright and good_units and right_sign and angle_in_range, add_credit(1.0,'Correct.'),\nright and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\nright and right_sign and not good_units, add_credit(settings['C2'],'Correct angle, but missing degree symbol.'),\nright and good_units and right_sign and not angle_in_range,add_credit(settings['C1'],'Angle is out of range.'),\nclose and good_units, add_credit(settings['C1'],'Close.'),\nclose and not good_units, add_credit(settings['C3'],'Answer is close, but missing degree symbol.'),\nincorrect('Wrong answer.')\n)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)"}, {"name": "correct_scalar", "description": "", "definition": "scalar(correct_quantity)\n "}, {"name": "correct_quantity", "description": "", "definition": "settings['correct_quantity']"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "", "definition": "join(\nsplit(studentAnswer[len(match_student_number[0])..len(studentAnswer)]\n,\"\u00b0\"),\" deg\")\n\n"}, {"name": "good_units", "description": "", "definition": "try(\nkind(quantity(1, student_units))= kind(correct_quantity),\nmsg,\nfeedback(msg);false)"}, {"name": "student_quantity", "description": "", "definition": "switch(not good_units, \nstudent_scalar * correct_units, \nnot right_sign,\n-quantity(student_scalar, student_units),\nquantity(student_scalar,student_units)\n)"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity)"}, {"name": "angle_in_range", "description": "", "definition": "if(settings['restrict_angle'], abs(student_scalar) <= 90, true)"}, {"name": "right", "description": "

Will check for correct sign elswhere.

", "definition": "withinTolerance(abs(student_scalar), abs(correct_scalar), settings['right'])"}, {"name": "close", "description": "

Must have correct sign to be close.

", "definition": "withinTolerance(student_scalar, correct_scalar, settings['close'])\n"}], "settings": [{"name": "correct_quantity", "label": "Correct Angle as quantity ", "help_url": "", "hint": "", "input_type": "code", "default_value": "qty(45,'deg')", "evaluate": true}, {"name": "right", "label": "Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within ± this amount from the correct value.", "input_type": "code", "default_value": "0.1", "evaluate": true}, {"name": "restrict_angle", "label": "Less than 90\u00b0", "help_url": "", "hint": "When checked, angle must be between -90° and +90°.", "input_type": "checkbox", "default_value": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.", "input_type": "percent", "default_value": "75"}, {"name": "close", "label": " Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within ± this amount from the correct value.", "input_type": "code", "default_value": "0.5", "evaluate": true}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value without units.", "input_type": "percent", "default_value": "25"}], "public_availability": "restricted", "published": false, "extensions": ["quantities"]}, {"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": []}