// Numbas version: exam_results_page_options {"name": "Polynomial Quiz", "metadata": {"description": "A quick quiz on dividing polynomials and using the factor theorem.", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questions": [{"name": "Divide Polynomials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "s1", "description": ""}, "be": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-9..9)", "name": "be", "description": ""}, "r": {"group": "Ungrouped variables", "templateType": "anything", "definition": "1", "name": "r", "description": ""}, "n": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-9..9)", "name": "n", "description": ""}, "m": {"group": "Ungrouped variables", "templateType": "anything", "definition": "1", "name": "m", "description": ""}, "s": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s1*random(1..9)", "name": "s", "description": ""}, "al": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-9..9)", "name": "al", "description": ""}, "s2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "s2", "description": ""}, "t": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s2*random(-9..9)", "name": "t", "description": ""}}, "ungrouped_variables": ["be", "s2", "s1", "m", "al", "n", "s", "r", "t"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Dividing a cubic polynomial by a linear polynomial. Find quotient and remainder.

"}, "parts": [{"showCorrectAnswer": true, "scripts": {}, "gaps": [{"answer": "(({m} * (x ^ 2)) + ({n} * x) + {t})", "showCorrectAnswer": true, "vsetrange": [0, 1], "scripts": {}, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"showStrings": false, "message": "

Input numbers as integers not decimals.

", "strings": ["."], "partialCredit": 0}, "showpreview": true, "checkingtype": "absdiff", "checkingaccuracy": 0.001, "answersimplification": "std", "type": "jme", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}, {"showCorrectAnswer": true, "correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "{t*n+be-t*s}", "maxValue": "{t*n+be-t*s}", "variableReplacements": [], "marks": 2}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "prompt": "\n \n \n

$q(x)=\\;\\;$[[0]]

\n \n \n \n

Input all numbers as integers and not as decimals.

\n \n \n \n

$r=\\;\\;$[[1]]

\n \n \n ", "variableReplacements": [], "marks": 0}], "statement": "\n

Divide $\\displaystyle{\\simplify[std]{{r * m} * x ^ 3 + {n * r + m * s} * x ^ 2 + {n * s + t * r} * x + {t * n + be}}}$ by $\\simplify[std]{{r}x+{s}}$ so that:
\\[\\frac{\\simplify[std]{{r * m} * x ^ 3 + {n * r + m * s} * x ^ 2 + {n * s + t * r} * x + {t * n + be}}}{\\simplify[std]{{r}x+{s}}}=q(x)+\\frac{r}{\\simplify[std]{{r}x+{s}}}\\]

\n

where $q(x)$ is the quotient polynomial and $r$ is the remainder ($r$ is a constant).

\n

The coefficients of $q(x)$ are integers, do not input as decimals.

\n ", "tags": ["algebra", "algebraic manipulation", "checked2015", "dividing polynomials", "division of polynomials", "polynomial division", "quotient polynomial", "remainder polynomial"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

We have:

\n

\\[\\begin{eqnarray*} \\simplify[std]{{r * m} * x ^ 3 + {n * r + m * s} * x ^ 2 + {n * s + t * r} * x + {t * n + be}}&=&\\simplify[std]{(x+{s})x^2+{n}x^2+{n*s+t}x+{t*n+be}}\\\\&=&\\simplify[std]{(x+{s})x^2+(x+{s})*{n}x+{t}x+{t*n+be}}\\\\ &=&\\simplify[std]{(x+{s})x^2+(x+{s})*{n}x+(x+{s})*{t}+{t*n+be-s*t}}\\\\ &=&\\simplify[std]{(x+{s})(x^2+{n}x+{t})+{t*n+be-s*t}} \\end{eqnarray*} \\]

\n

Hence
\\[\\frac{\\simplify[std]{{r * m} * x ^ 3 + {n * r + m * s} * x ^ 2 + {n * s + t * r} * x + {t * n + be}}}{\\simplify[std]{{r}x+{s}}}=\\simplify[std]{x^2+{n}x+{t}+{t*n+be-s*t}/({r}x+{s})}\\]

"}, {"name": "Use the factor theorem to identify factors of a polynomial", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Elliott Fletcher", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1591/"}], "rulesets": {}, "functions": {}, "ungrouped_variables": ["a", "b", "c", "d", "coef1_x3", "coef1_x2", "coef1_x", "const", "coef2_x3", "coef2_x2", "coef2_x", "coef3_x3", "coef3_x2", "coef3_x"], "metadata": {"description": "

Apply the factor theorem to check which of a list of linear polynomials are factors of another polynomial.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "variable_groups": [], "advice": "

To find the factors of the polynomial $f(x) = \\simplify{x^3+({a}+{b}+{c})x^2+({a}{b}+{a}{c}+{b}{c})x+{a}{b}{c}}$, we use the factor theorem. 

\n

If $f(x)$ is a polynomial and $f(p) = 0$, then $(x-p)$ is a factor of $f(x)$.

\n

If $(\\simplify{(x+{a})})$ is a factor of $f(x)$ then by the factor theorem, $f(\\simplify{-{a}}) = 0$.

\n

We see that

\n

\\[
\\begin{align}
f(\\simplify{-{a}}) &= \\simplify[all,!collectNumbers]{{coef1_x3}+{coef1_x2}+{coef1_x}+{const}}\\\\
&= \\simplify{{coef1_x3}+{coef1_x2}+{coef1_x}+{const}}.
\\end{align}
\\]

\n

Therefore, $(\\simplify{(x+{a})})$ is a factor of $f(x)$.

\n

Similarly for $(\\simplify{(x+{d})})$,

\n

\\[
\\begin{align}
f(\\simplify{-{d}}) &= \\simplify[all,!collectNumbers]{{coef2_x3}+{coef2_x2}+{coef2_x}+{const}}\\\\
&= \\simplify{{coef2_x3}+{coef2_x2}+{coef2_x}+{const}}\\\\
&\\neq 0.
\\end{align}
\\]

\n

Therefore, $(\\simplify{(x+{d})})$ is not a factor of $f(x)$.

\n

Finally, for $(\\simplify{(x+{c})})$,

\n

\\[
\\begin{align}
f(\\simplify{-{c}}) &= \\simplify[all,!collectNumbers]{{coef3_x3}+{coef3_x2}+{coef3_x}+{const}}\\\\
&= \\simplify{{coef3_x3}+{coef3_x2}+{coef3_x}+{const}}.
\\end{align}
\\]

\n

Therefore, $(\\simplify{(x+{c})})$ is also a factor of $f(x)$.

", "statement": "

The factor theorem states that if $f(x)$ is a polynomial and $f(p) = 0$, then $(x-p)$ is a factor of $f(x)$. 

", "preamble": {"js": "", "css": ""}, "variables": {"coef1_x3": {"templateType": "anything", "description": "

Number obtained from putting x=-a into the first term of the equation.

", "name": "coef1_x3", "group": "Ungrouped variables", "definition": "(-a)^3"}, "coef1_x2": {"templateType": "anything", "description": "

Number obtained from putting x=-a into the second term of the equation.

", "name": "coef1_x2", "group": "Ungrouped variables", "definition": "(a+b+c)*(-a)^2"}, "coef2_x3": {"templateType": "anything", "description": "

Number obtained from putting x=-d into the first term in the equation.

", "name": "coef2_x3", "group": "Ungrouped variables", "definition": "(-d)^3"}, "coef1_x": {"templateType": "anything", "description": "

Number obtained from putting x=-a into the first term of the equation.

", "name": "coef1_x", "group": "Ungrouped variables", "definition": "(a*b+b*c+a*c)*(-a)"}, "coef3_x3": {"templateType": "anything", "description": "

Number obtained for putting x=-c into the first term of the equation.

", "name": "coef3_x3", "group": "Ungrouped variables", "definition": "(-c)^3"}, "const": {"templateType": "anything", "description": "

Constant term in the equation.

", "name": "const", "group": "Ungrouped variables", "definition": "a*b*c"}, "c": {"templateType": "anything", "description": "

Random number between -2 and 3 except 0 for creating polynomial.

", "name": "c", "group": "Ungrouped variables", "definition": "random(-2..3 except 0)"}, "d": {"templateType": "anything", "description": "

Incorrect answer for part a.

", "name": "d", "group": "Ungrouped variables", "definition": "random(-2..2 except 0 except a except c except b)"}, "coef2_x": {"templateType": "anything", "description": "

Number obtained from putting x=-d into the 3rd term for the equation.

", "name": "coef2_x", "group": "Ungrouped variables", "definition": "(a*b+b*c+a*c)*(-d)"}, "a": {"templateType": "anything", "description": "

Random number between -2 and 3, not including 0 for creating polynomial.

", "name": "a", "group": "Ungrouped variables", "definition": "random(-2..3 except 0 except c)"}, "coef2_x2": {"templateType": "anything", "description": "

Number obtained from putting x=-d into the second term of the equation.

", "name": "coef2_x2", "group": "Ungrouped variables", "definition": "(a+b+c)*(-d)^2"}, "b": {"templateType": "anything", "description": "

Random number between -2 and 3 except 0 for creating polynomial.

", "name": "b", "group": "Ungrouped variables", "definition": "random(-2..3 except 0 except c)"}, "coef3_x": {"templateType": "anything", "description": "

Number obtained by putting x=-c into the third term of the equation.

", "name": "coef3_x", "group": "Ungrouped variables", "definition": "(a*b+b*c+a*c)*(-c)"}, "coef3_x2": {"templateType": "anything", "description": "", "name": "coef3_x2", "group": "Ungrouped variables", "definition": "(a+b+c)*(-c)^2"}}, "parts": [{"variableReplacementStrategy": "originalfirst", "choices": ["

$(\\simplify{x+{a}})$

", "

$(\\simplify{x+{d}})$

", "

$(\\simplify{x+{c}})$

"], "matrix": ["1", 0, "1"], "displayColumns": 0, "distractors": ["", "", ""], "maxMarks": 0, "type": "m_n_2", "minMarks": 0, "marks": 0, "maxAnswers": 0, "prompt": "

Use the factor theorem to find which two of the following are factors of the polynomial

\n

\\[f(x) = \\simplify{x^3+({a}+{b}+{c})x^2+({a}{b}+{a}{c}+{b}{c})x+{a}{b}{c}}.\\]

", "variableReplacements": [], "warningType": "none", "showFeedbackIcon": true, "displayType": "checkbox", "shuffleChoices": true, "showCorrectAnswer": true, "minAnswers": 0, "scripts": {}}], "tags": ["factor theorem", "Factor Theorem", "factors", "Factors", "Multiple choice", "Multiple Choice", "multiple choice", "polynomial", "Polynomial", "taxonomy"], "variablesTest": {"maxRuns": 100, "condition": ""}}]}], "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "

When typing answers, use the ^ key (SHIFT 6)  to express powers.

\n

E.g.  Type   x^3  to get  $x^3$

", "feedbackmessages": []}, "contributors": [{"name": "Brad McAuliffe", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4645/"}], "extensions": [], "custom_part_types": [], "resources": []}