// Numbas version: finer_feedback_settings {"name": "Probando", "metadata": {"description": "", "licence": "None specified"}, "duration": 600, "percentPass": "50", "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questions": [{"name": "Apples", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Leonardo Fern\u00e1ndez Jambrina", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4684/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "
I eat {apples} apples a day
", "advice": "", "rulesets": {}, "variables": {"apples": {"name": "apples", "group": "Ungrouped variables", "definition": "random(1 .. 10#1)", "description": "Number of apples
", "templateType": "randrange"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["apples"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "How many apples I eat in a week?
", "minValue": "7*{apples}", "maxValue": "7*{apples}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "type": "question"}, {"name": "Leonardo's copy of MA1002 First order differential equations 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Kieran Mulchrone", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1243/"}, {"name": "Leonardo Fern\u00e1ndez Jambrina", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4684/"}], "tags": [], "metadata": {"description": "Solve 4 first order differential equations of two types:$\\displaystyle \\frac{dy}{dx}=\\frac{ax}{y},\\;\\;\\frac{dy}{dx}=\\frac{by}{x},\\;y(2)=1$ for all 4.
\nrebelmaths
\n", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "
Separate the variables:
\nFind the solutions of the following ordinary differential equations satisfying the condition $y=1$ at $x=2$.
\nYou may find it instructive to sketch your various solutions (but this is not required for this CBA).
", "advice": "\nThese are all separable first order differential equations.
\na)
\n$\\displaystyle{\\frac{dy}{dx}=\\frac{y}{\\var{a1}x} \\Rightarrow \\int \\frac{1}{y}\\;dy = \\frac{1}{\\var{a1}}\\int\\frac{1}{x}\\;dx \\Rightarrow \\ln(y)=\\frac{1}{\\var{a1}}\\ln(x)+C}$
\nExponentiation of both sides then gives $y=Ax^{1/\\var{a1}}$ where we have renamed the constant of integration.
\nTo find the particular solution satisfying $y=1$ at $x=2$, we have $\\displaystyle{1=A \\times 2^{1/\\var{a1}} \\Rightarrow A = \\frac{1}{2^{1/\\var{a1}}}}$
\nHence the solution is $\\displaystyle{y=\\left(\\frac{x}{2}\\right)^{1/\\var{a1}}}$
\nb)
\n$\\displaystyle{\\frac{dy}{dx}=-\\var{a2}\\frac{y}{x} \\Rightarrow \\int \\frac{1}{y}\\;dy = -\\var{a2}\\int\\frac{1}{x}\\;dx \\Rightarrow \\ln(y)=-\\var{a2}\\ln(x)+C}$
\nExponentiation of both sides then gives $y=Ax^{-\\var{a2}}$ where we have renamed the constant of integration.
\nThe particular solution satisfying $y=1$ at $x=2$, gives $A = 2^{\\var{a2}}$
\nHence the solution is $\\displaystyle{y=\\left(\\frac{2}{x}\\right)^{\\var{a2}}}$
\nc)
\n$\\displaystyle{\\frac{dy}{dx}=\\var{a3}\\frac{x}{y} \\Rightarrow \\int y\\;dy = \\var{a3}\\int x\\;dx \\Rightarrow \\frac{y^2}{2}=\\var{a3}\\frac{x^2}{2}+C\\Rightarrow y^2=\\var{a3}x^2+A}$
\nThe particular solution satisfying $y=1$ at $x=2$, gives $A = \\var{1-4*a3}$.
\nHence the solution is $\\displaystyle{y^2=\\simplify[std]{{a3}x^2+{1-4*a3}}}$.
\nd)
\n$\\displaystyle{\\frac{dy}{dx}=-\\var{a4}\\frac{x}{y} \\Rightarrow \\int y\\;dy = -\\var{a4}\\int x\\;dx \\Rightarrow y^2=-\\var{a4}x^2+A}$
\nThe particular solution satisfying $y=1$ at $x=2$, gives $A = \\var{1+4*a4}$.
\nHence the solution is $\\displaystyle{y^2=\\simplify[std]{{-a4}x^2+{1+4*a4}}}$.
\n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "variables": {"a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "a4": {"name": "a4", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a1", "a3", "a2", "a4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "\n$\\displaystyle{\\frac{dy}{dx}=\\frac{y}{\\var{a1}x}}$
\n$y=\\;\\;$[[0]]
\nDo not enter decimals in your answer; use only fractions or integers.
\n ", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "(x/2)^(1/{a1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input numbers as fractions or integers, not as decimals
"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "\n$\\displaystyle{\\frac{dy}{dx}=-\\var{a2}\\frac{y}{x}}$
\n$y=\\;\\;$[[0]]
\nDo not enter decimals in your answer; use only fractions or integers.
\n ", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "(2/x)^({a2})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input numbers as fractions or integers, not as decimals
"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "\n$\\displaystyle{\\frac{dy}{dx}=\\var{a3}\\frac{x}{y}}$
\nThe solution can be written in the form $y^2=f(x)$. Enter $f(x)$ in the box below
\n$y^2=\\;\\;$[[0]]
\nDo not enter decimals in your answer; use only fractions or integers.
\n ", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{1-4*a3} + {a3} * (x ^ 2)", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input numbers as fractions or integers, not as decimals
"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "\n$\\displaystyle{\\frac{dy}{dx}=-\\var{a4}\\frac{x}{y}}$
\nThe solution can be written in the form $y^2=g(x)$. Enter $g(x)$ in the box below
\n$y^2=\\;\\;$[[0]]
\nDo not enter decimals in your answer; use only fractions or integers.
\n ", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{1+4*a4} + {-a4} * (x ^ 2)", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input numbers as fractions or integers, not as decimals
"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "type": "question"}]}], "navigation": {"allowregen": false, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "review", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "warn", "message": "Se ha terminado el tiempo
"}, "timedwarning": {"action": "warn", "message": "Te quedan cinco minutos
"}}, "feedback": {"showactualmark": false, "showtotalmark": false, "showanswerstate": false, "allowrevealanswer": false, "advicethreshold": 0, "intro": "", "feedbackmessages": [], "enterreviewmodeimmediately": false, "showexpectedanswerswhen": "never", "showpartfeedbackmessageswhen": "inreview", "showactualmarkwhen": "inreview", "showtotalmarkwhen": "inreview", "showanswerstatewhen": "inreview", "showadvicewhen": "never"}, "type": "exam", "contributors": [{"name": "Leonardo Fern\u00e1ndez Jambrina", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4684/"}], "extensions": [], "custom_part_types": [], "resources": []}