// Numbas version: exam_results_page_options {"name": "Statistics Quiz Part 2", "metadata": {"description": "Distributions and rules", "licence": "All rights reserved"}, "duration": 1500, "percentPass": 0, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "random-subset", "pickQuestions": 1, "questions": [{"name": "Stats Quiz Part 2 (Normal)", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Kariane Ouellet", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4505/"}], "tags": [], "metadata": {"description": "Finding the measures, distribution and using the empirical rule.", "licence": "All rights reserved"}, "statement": "

Given are the prices for the first 15 airbnb in {city} (in Euros). Answer the following questions for each using whichever method you see fit.

\n

{data}

\n

Notes:

\n
\n
• If the median and the mean are within 1.00 of each other, consider them \"equal\". If not, consider them different.
• \n
• Keep 2 decimals
• \n

No solution available

", "rulesets": {}, "variables": {"data": {"name": "data", "group": "Ungrouped variables", "definition": "repeat(precround(normalsample(tm,tsd),2),15)", "description": "", "templateType": "anything"}, "city": {"name": "city", "group": "Ungrouped variables", "definition": "random(\"Paris\", \"Rome\", \"Berlin\", \"Brussels\", \"Amsterdam\", \"Prague\")", "description": "", "templateType": "anything"}, "av": {"name": "av", "group": "Ungrouped variables", "definition": "mean(data)", "description": "", "templateType": "anything"}, "sd": {"name": "sd", "group": "Ungrouped variables", "definition": "stdev(data)", "description": "", "templateType": "anything"}, "sd1": {"name": "sd1", "group": "Ungrouped variables", "definition": "stdev(data)*sqrt(15/14)", "description": "", "templateType": "anything"}, "tm": {"name": "tm", "group": "Ungrouped variables", "definition": "random(115..135)", "description": "", "templateType": "anything"}, "tsd": {"name": "tsd", "group": "Ungrouped variables", "definition": "int+dec*10^(-1)", "description": "", "templateType": "anything"}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "random(4..7)", "description": "", "templateType": "anything"}, "dec": {"name": "dec", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "length(mean(data)-median(data)) <= 1", "maxRuns": 100}, "ungrouped_variables": ["tm", "int", "dec", "tsd", "data", "city", "av", "sd", "sd1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Question 1: Measures", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

For the following question, you might use google sheet or do it by hand, whichever you are most comfortable. (If you use google sheet, provide the link to your spreadsheet)

\n

a) What is the mean of the sample? $\\bar{x}=$ [[0]]

\n

b) What is the median of the sample? [[1]]

\n

c) What is the standard deviation of the sample? $s=$[[2]]

\n

d) Using the information you found out, should you assume the population follows a normal distribution or a skewed distribution? [[3]]

\n

e) Given this information, which measure of central tendency is the most representative? [[4]]

Fill the blanks:

\n

Using [[0]], I find out that [[1]] [[2]]% (<--write percentage) of the data is within two standard deviations from the mean. In other words, [[2]]% of the data is contained in the interval: [[[3]],[[4]]]

Given are the prices for the first 15 airbnb in {city} (in Euros). Answer the following questions for each using whichever method you see fit.

\n

{datac}

\n

Notes:

\n
\n
• If the median and the mean are within 1.00 of each other, consider them \"equal\". If not, consider them different.
• \n
• Keep 2 decimals
• \n

No solution available

", "rulesets": {}, "variables": {"city": {"name": "city", "group": "Ungrouped variables", "definition": "random(\"Paris\", \"Rome\", \"Berlin\", \"Brussels\", \"Amsterdam\", \"Prague\")", "description": "", "templateType": "anything"}, "av": {"name": "av", "group": "Ungrouped variables", "definition": "mean(datac)", "description": "", "templateType": "anything"}, "sd": {"name": "sd", "group": "Ungrouped variables", "definition": "stdev(datac)", "description": "", "templateType": "anything"}, "sd1": {"name": "sd1", "group": "Ungrouped variables", "definition": "stdev(datac)*sqrt(15/14)", "description": "", "templateType": "anything"}, "tm": {"name": "tm", "group": "Ungrouped variables", "definition": "random(115..135)", "description": "", "templateType": "anything"}, "tsd": {"name": "tsd", "group": "Ungrouped variables", "definition": "int+dec*10^(-1)", "description": "", "templateType": "anything"}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "random(5..10)", "description": "", "templateType": "anything"}, "dec": {"name": "dec", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "data1": {"name": "data1", "group": "Ungrouped variables", "definition": "repeat(precround(normalsample(tm-tsd,tsd/2),2),11)", "description": "", "templateType": "anything"}, "data2": {"name": "data2", "group": "Ungrouped variables", "definition": "repeat(precround(normalsample(tm+1.5*tsd,tsd),2),4)", "description": "", "templateType": "anything"}, "datac": {"name": "datac", "group": "Ungrouped variables", "definition": "data1+data2", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "length(mean(datac)-median(datac)) >= 1.5", "maxRuns": "100"}, "ungrouped_variables": ["tm", "int", "dec", "tsd", "city", "av", "sd", "sd1", "data1", "data2", "datac"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Question 1: Measures", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

For the following question, you might use google sheet or do it by hand, whichever you are most comfortable. (If you use google sheet, provide the link to your spreadsheet)

\n

a) What is the mean of the sample? $\\bar{x}=$ [[0]]

\n

b) What is the median of the sample? [[1]]

\n

c) What is the standard deviation of the sample? $s=$[[2]]

\n

d) Using the information you found out, should you assume the population follows a normal distribution or a skewed distribution? [[3]]

\n

e) Given this information, which measure of central tendency is the most representative? [[4]]

Fill the blanks:

\n

Using [[0]], I find out that [[1]] [[2]]% (<--write percentage) of the data is within two standard deviations from the mean. In other words, [[2]]% of the data is contained in the interval: [[[3]],[[4]]]

Don't leave blank questions, you cannot comeback!

"}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": false, "timeout": {"action": "warn", "message": "

You are out of time!

"}, "timedwarning": {"action": "warn", "message": "

5 minutes before time-out!

Welcome the the second stats quiz! It's very short.

\n
\n
• You have 25 minutes.
• \n
• There are 2 questions (with parts). The topics are distribution, Empirical & Chebyshev's Rules
• \n
• \n
• Be aware of my instructions!!
• \n
\n

For this part, you might use google sheets OR do the things by hand. One way or another, make sure you submit your work on google classroom!

\n

Let me know if you have any questions!

\n

Good luck!

", "feedbackmessages": []}, "contributors": [{"name": "Kariane Ouellet", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4505/"}], "extensions": ["stats"], "custom_part_types": [], "resources": []}