// Numbas version: finer_feedback_settings {"name": "SIT190 - Module 1 - Self-assessment", "metadata": {"description": "
SIT190 - Module 1 - Quiz
", "licence": "None specified"}, "duration": 5400, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Module 1", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "variable_overrides": [[], [], []], "questions": [{"name": "1.1 Operation precedence", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "The following questions are based on the material covering operator precedence.
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "op1": {"name": "op1", "group": "Ungrouped variables", "definition": "latex([\"\\\\times\",\"\\\\div\",\"+\",\"-\"][numop1])", "description": "", "templateType": "anything", "can_override": false}, "op2": {"name": "op2", "group": "Ungrouped variables", "definition": "latex([\"\\\\times\",\"\\\\div\",\"+\",\"-\"][numop2])", "description": "", "templateType": "anything", "can_override": false}, "shuffleorder": {"name": "shuffleorder", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "numop1": {"name": "numop1", "group": "Ungrouped variables", "definition": "if(question=1,random(0..3),0)", "description": "", "templateType": "anything", "can_override": false}, "numop2": {"name": "numop2", "group": "Ungrouped variables", "definition": "random(0..3 except numop1)", "description": "", "templateType": "anything", "can_override": false}, "operation1": {"name": "operation1", "group": "Ungrouped variables", "definition": "[\"multiplication\",\"division\",\"addition\",\"subtraction\"][numop1]", "description": "", "templateType": "anything", "can_override": false}, "operation2": {"name": "operation2", "group": "Ungrouped variables", "definition": "[\"multiplication\",\"division\",\"addition\",\"subtraction\"][numop2]", "description": "", "templateType": "anything", "can_override": false}, "question": {"name": "question", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "w": {"name": "w", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "multdiv1": {"name": "multdiv1", "group": "Ungrouped variables", "definition": "latex([\"\\\\times\",\"\\\\div\"][random(0..1)])", "description": "", "templateType": "anything", "can_override": false}, "multdiv2": {"name": "multdiv2", "group": "Ungrouped variables", "definition": "latex([\"\\\\times\",\"\\\\div\"][random(0..1)])", "description": "", "templateType": "anything", "can_override": false}, "multdiv3": {"name": "multdiv3", "group": "Ungrouped variables", "definition": "latex([\"\\\\times\",\"\\\\div\"][random(0..1)])", "description": "", "templateType": "anything", "can_override": false}, "multdiv4": {"name": "multdiv4", "group": "Ungrouped variables", "definition": "latex([\"\\\\times\",\"\\\\div\"][random(0..1)])", "description": "", "templateType": "anything", "can_override": false}, "pm1": {"name": "pm1", "group": "Ungrouped variables", "definition": "latex([\"+\",\"-\"][random(0..1)])", "description": "", "templateType": "anything", "can_override": false}, "pm2": {"name": "pm2", "group": "Ungrouped variables", "definition": "latex([\"+\",\"-\"][random(0..1)])", "description": "", "templateType": "anything", "can_override": false}, "pm3": {"name": "pm3", "group": "Ungrouped variables", "definition": "latex([\"+\",\"-\"][random(0..1)])", "description": "", "templateType": "anything", "can_override": false}, "pm4": {"name": "pm4", "group": "Ungrouped variables", "definition": "latex([\"+\",\"-\"][random(0..1)])", "description": "", "templateType": "anything", "can_override": false}, "q2": {"name": "q2", "group": "Ungrouped variables", "definition": "if(random(0..1)=1,latex(\"{w} {pm1} {x} {pm2} {y} {pm3} {z}\"),\n latex(\"{w} {multdiv1} {x} {multdiv2} {y} {multdiv3} {z}\"))", "description": "", "templateType": "anything", "can_override": false}, "q2b": {"name": "q2b", "group": "Ungrouped variables", "definition": "if(random(0..1)=1,latex(\"{w} {multdiv4} {x} {multdiv3} {y} {pm4} {z}\"),\n latex(\"{w} {multdiv4} {x} {pm4} {y} {pm1} {z}\"))", "description": "", "templateType": "anything", "can_override": false}, "q2c": {"name": "q2c", "group": "Ungrouped variables", "definition": "if(random(0..1)=1,latex(\"{w} {pm3} {x} {multdiv3} {y} {pm1} {z}\"),\n latex(\"{w} {pm3} {x} {multdiv3} {y} {multdiv2} {z}\"))", "description": "", "templateType": "anything", "can_override": false}, "q2d": {"name": "q2d", "group": "Ungrouped variables", "definition": "if(random(0..2)=1,latex(\"{w} {multdiv2} {x} {pm2} {y} {multdiv4} {z}\")\n,latex(\"{w} {pm2} {x} {pm3} {y} {multdiv2} {z}\"))", "description": "", "templateType": "anything", "can_override": false}, "q3a": {"name": "q3a", "group": "Ungrouped variables", "definition": "if(random(0..1)=1,latex(\"({w} {multdiv3} {b}) ^ {y} \"),\n latex(\"{w}^{y} {multdiv3} {b}^{y} \"))", "description": "", "templateType": "anything", "can_override": false}, "q3b": {"name": "q3b", "group": "Ungrouped variables", "definition": "if(random(0..1)=1,latex(\"{w} {multdiv3} {b} ^ {y} \"),\n latex(\"{b} {multdiv3} {w} ^ {y} \"))", "description": "$(\\var{b} \\var{multdiv3} \\var{w})^\\var{y}$
", "templateType": "anything", "can_override": false}, "q4": {"name": "q4", "group": "Ungrouped variables", "definition": "random(0..1)", "description": "", "templateType": "anything", "can_override": false}, "q4eq": {"name": "q4eq", "group": "Ungrouped variables", "definition": "if(q4=1,latex(\"-a ^ {theindex} \"),\n latex(\"a^{theindex} \"))", "description": "", "templateType": "anything", "can_override": false}, "theindex": {"name": "theindex", "group": "Ungrouped variables", "definition": "random(2..3)", "description": "", "templateType": "anything", "can_override": false}, "a_value": {"name": "a_value", "group": "Ungrouped variables", "definition": "random(-7..-3)", "description": "", "templateType": "anything", "can_override": false}, "q4_ans": {"name": "q4_ans", "group": "Ungrouped variables", "definition": "if(q4=1,-1*a_value^theindex,a_value^theindex)", "description": "", "templateType": "anything", "can_override": false}, "q5eq": {"name": "q5eq", "group": "Ungrouped variables", "definition": "if(q5=0,latex(\"{v51} \\\\times {v52} - {v53} \\\\div {v54}^2\"),if(q5=1,latex(\"({v51} \\\\div {v52})^2 - {v53} \\\\times {v54}\"),latex(\"({v51} + {v53})^2 - {v54} \\\\div {v52} \\\\times 2\")))", "description": "", "templateType": "anything", "can_override": false}, "q5_ans": {"name": "q5_ans", "group": "Ungrouped variables", "definition": "precround(if(q5=0,{v51} * {v52} - ({v53} / ({v54}^2)),if(q5=1,({v51} / {v52})^2 - ({v53} * {v54}),({v51} + {v53})^2 - ({v54} / {v52}) * 2)),3)", "description": "", "templateType": "anything", "can_override": false}, "q5": {"name": "q5", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "v51": {"name": "v51", "group": "Ungrouped variables", "definition": "random(-6..9 except -1..1)", "description": "", "templateType": "anything", "can_override": false}, "v52": {"name": "v52", "group": "Ungrouped variables", "definition": "random(-6..9 except -1..1)", "description": "", "templateType": "anything", "can_override": false}, "v53": {"name": "v53", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "v54": {"name": "v54", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "op51": {"name": "op51", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}, "op52": {"name": "op52", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}, "op53": {"name": "op53", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}, "op54": {"name": "op54", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "op1", "op2", "shuffleorder", "numop1", "numop2", "operation1", "operation2", "question", "w", "x", "y", "z", "multdiv1", "multdiv2", "multdiv3", "multdiv4", "pm1", "pm2", "pm3", "pm4", "q2", "q2b", "q2c", "q2d", "q3a", "q3b", "q4", "q4eq", "theindex", "a_value", "q4_ans", "q5eq", "q5_ans", "q5", "v51", "v52", "v53", "v54", "op51", "op52", "op53", "op54"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which of the following expressions can be evaluated from left to right without violating the correct order of operations?
\n[[0]]
\n", "gaps": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\var{q2b}$", "$ \\var{q2}$", "$\\var{q2c}$", "$\\var{q2d}$"], "matrix": ["1", "1", "-1", "-1"], "distractors": ["", "", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Evaluate $\\var{q4eq} $ when $a = \\var{a_value}$.
\nYour answer: [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "q4_ans", "maxValue": "q4_ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Practice applying order of operations with the following question.
\nEvaluate your answer to 3 decimal places (if it is a decimal).
\n\\[ \\var{q5eq} \\]
\nYour answer: [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "q5_ans", "maxValue": "q5_ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "1.2 - Fractions - Add, subtract, multiply,divide (simple operations)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Kieran Mulchrone", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1243/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "This is a set of questions designed to help you practice adding, subtracting, multiplying and dividing fractions.
\nAll of these can be done without a calculator.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "These are basic questions to help you practice adding, subtracting, multiplying and dividing fractions.
\nAttempt the questions without a calculator.
\nGive your answer as a fraction.
", "advice": "When adding/subtracting fractions, you must first find a common denominator between the fractions. If they already have the same denominator then you only need to worry about adding/subtracting the numerators and dividing the result by the common denominator.
\nFor example:
To find a common denominator of $\\frac{2}{5} + \\frac{7}{15}$, the most obvious would be $15$, because $5\\times3=15$. Therefore, you must multiply both sides of the fraction $\\frac{2}{5}$ by $3$ to obtain a new fraction $\\frac{6}{15}$. This is known as 'scaling up'.
Now you can add the two fractions together (by adding the numerators) because they have the same denominator:
$\\frac{6}{15}+\\frac{7}{15}=\\frac{13}{15}$.
The same applies with subtraction as well as addition.
\n\nWhen multiplying fractions, you can simply multiply the two numerators and divide this by the multiplication of the two denominators.
\nFor example:
$\\frac{a}{b}\\times\\frac{c}{d}$ = $\\frac{a\\times{c}}{b\\times{d}}$
In some cases, it is possible to cancel out terms be capitalising on the associativity and commutativity of multiplication.
\ne.g.
\nFor
\n\\[ \\frac{10}{9} \\times \\frac{6}{5} \\]
\nRather than calculating $10 \\times 6 = 60$ and dividing this by $9 \\times 5 = 45$, we can recognise that the multiplication will give the same result as
\n\\[ \\frac{10}{5} \\times \\frac{6}{9} \\]
\nand then recognise that these fractions have simpler represenations of $2$ and $\\frac{2}{3}$ respectively, and so then we can calculate the solution to be $\\frac{4}{3}$ more easily.
\n\nWhen dividing fractions, you firstly need to reciprocate (flip) the second fraction, then multiply the numerators and denominators as you would a normal multiplication question.
\nFor example:
$\\frac{a}{b} \\div \\frac{c}{d}$ would be flipped to become $\\frac{a}{b} \\div \\frac{d}{c}$ and then treated as a normal multiplication question (as explained above).
What is the answer to $\\frac{\\var{ker2}}{\\var{ker1}} + \\frac{\\var{ker4}}{\\var{cf*ker1}}$?
", "minValue": "(ker2*cf + ker4)/(cf*ker1)", "maxValue": "(ker2*cf + ker4)/(cf*ker1)", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the answer to $\\frac{\\var{ker2}}{\\var{ker1}} - \\frac{\\var{ker4}}{\\var{(cf+1)*ker1}}$?
", "minValue": "(ker2*(cf+1) - ker4)/((cf+1)*ker1)", "maxValue": "(ker2*(cf+1) - ker4)/((cf+1)*ker1)", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the answer to $\\frac{\\var{ker2}}{\\var{ker1+1}} + \\frac{\\var{ker4+1}}{\\var{(cf)*(ker1+1)}}$?
", "minValue": "(ker2*cf + ker4+1)/((ker1+1)*cf)", "maxValue": "(ker2*cf + ker4+1)/((ker1+1)*cf)", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the answer to $\\frac{\\var{mult1[0]}}{\\var{mult1[1]}} \\times \\frac{\\var{mult1[2]}}{\\var{mult1[3]}}$?
", "minValue": "(mult1[0]*mult1[2])/(mult1[1]*mult1[3])", "maxValue": "(mult1[0]*mult1[2])/(mult1[1]*mult1[3])", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": "70", "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the answer to $\\frac{\\var{div1[0]}}{\\var{div1[1]}} \\div \\frac{\\var{div1[2]}}{\\var{div1[3]}}$?
", "minValue": "(div1[0]/div1[1])/(div1[2]/div1[3])", "maxValue": "(div1[0]/div1[1])/(div1[2]/div1[3])", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "1.3 Expand brackets and collect like terms", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Bradley Bush", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1521/"}, {"name": "Aiden McCall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1592/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "Eight expressions, of increasing complexity. The student must simplify them by expanding brackets and collecting like terms.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "For each expression below, collect like terms and expand brackets.
\nThe * symbol is required between algebraic symbols, e.g. $5ab^2$ should be written 5*a*b^2.
When simplifying expressions, only terms of the same type or like terms can be added together.
\nAlgebraic symbols or letters can be added together provided that they are raised to the same power. For example, we can add $x^2+x^2=2x^2$, but we cannot collect both $x^2$ and $x$ into one term.
\n\\[
\\begin{align}
\\var{c[0]}x+\\var{c[1]}x+\\var{c[2]}x&=(\\var{c[0]}+\\var{c[1]}+\\var{c[2]})x\\\\
&=\\simplify{({c[0]}+{c[1]}+{c[2]})}x
\\end{align}
\\]
\\[
\\begin{align}
\\var{a[1]}x^2+\\var{a[2]}x^2+\\var{a[3]}x+\\var{a[4]}x +\\var{a[0]}&=(\\var{a[1]}+\\var{a[2]})x^2+(\\var{a[3]}+\\var{a[4]})x +\\var{a[0]}\\\\
&=\\simplify{({a[1]}+{a[2]})}x^2+\\simplify{({a[3]}+{a[4]})}x+\\var{a[0]}
\\end{align}
\\]
\\[
\\begin{align}
\\var{b[0]}y^5+\\var{b[1]}y^5+\\var{b[2]}y^5+\\var{b[4]}y^5+\\var{b[3]}y^5&=(\\var{b[0]}+\\var{b[1]}+\\var{b[2]}+\\var{b[4]}+\\var{b[3]})y^5\\\\
&=\\simplify{({b[1]}+{b[2]}+{b[3]}+{b[4]}+{b[0]})}y^5
\\end{align}
\\]
\\[
\\begin{align}
\\var{d[0]}ab+\\var{d[1]}abc+\\var{d[2]}a+\\var{d[3]}b+\\var{d[4]}c+\\var{d[5]}abc
&=(\\var{d[1]}+\\var{d[5]})abc+\\var{d[0]}ab+\\var{d[2]}a+\\var{d[3]}b+\\var{d[4]}c\\\\
&=\\simplify{{d[1]}+{d[5]}}abc+\\var{d[0]}ab+\\var{d[2]}a+\\var{d[3]}b+\\var{d[4]}c
\\end{align}
\\]
\\[
\\begin{align}
\\var{f[0]}a^2b+\\var{f[1]}ab^2+\\var{f[2]}ab+\\var{f[3]}a^2b+\\var{f[4]}ab^2
&=(\\var{f[0]}+\\var{f[3]})a^2b+(\\var{f[1]}+\\var{f[4]})ab^2+\\var{f[2]}ab\\\\
&=\\simplify{{f[0]}+{f[3]}}a^2b+\\simplify{{f[1]}+{f[4]}}ab^2+\\var{f[2]}ab
\\end{align}
\\]
\\[
\\begin{align}
\\var{g[0]}(\\var{g[1]}x+\\var{g[2]}y)+\\var{g[4]}x+\\var{g[5]}y
&=(\\var{g[0]}\\times \\var{g[1]}+\\var{g[4]})x+(\\var{g[0]} \\times\\var{g[2]}+\\var{g[5]})y\\\\
&=(\\simplify{{g[0]}*{g[1]}}+\\var{g[4]})x+(\\simplify{{g[0]}*{g[2]}}+\\var{g[5]})y\\\\
&=\\simplify{{g[0]}*{g[1]}+{g[4]}}x+\\simplify{{g[0]}*{g[2]}+{g[5]}}y
\\end{align}
\\]
\\[
\\begin{align}
\\var{h[0]}x(\\var{h[1]}x+\\var{h[2]}z)+\\var{h[3]}x+\\var{h[6]}z+\\var{h[4]}x^2+\\var{h[5]}z^2
&=(\\simplify[]{{h[0]}{h[1]}}+\\var{h[4]})x^2+(\\simplify[]{{h[0]}{h[2]}})zx+\\var{h[3]}x+\\var{h[5]}z^2+\\var{h[6]}z\\\\
&=(\\simplify{{h[0]}{h[1]}}+\\var{h[4]})x^2+(\\simplify[]{{h[0]}{h[2]}})zx+\\var{h[3]}x+\\var{h[5]}z^2+\\var{h[6]}z\\\\
&=\\simplify{{h[0]}*{h[1]}+{h[4]}}x^2+\\simplify{{h[0]}*{h[2]}}zx+\\simplify{{h[3]}x+{h[5]}}z^2+\\var{h[6]}z
\\end{align}
\\]
\\[
\\begin{align}
\\var{j[0]}(\\var{j[1]}x-\\var{j[2]}y)+\\var{j[3]}(\\var{j[4]}x-\\var{j[5]}y)+\\var{j[6]}(\\var{j[7]}x-\\var{j[8]}y)
&= (\\simplify[]{{j[0]}{j[1]}}+\\simplify[]{{j[3]}{j[4]}}+\\simplify[]{{j[6]}{j[7]}})x-(\\simplify[]{{j[0]}{j[2]}}+\\simplify[]{{j[3]}{j[5]}}+\\simplify[]{{j[6]}{j[8]}})y\\\\
&= (\\simplify{{j[0]}{j[1]}}+\\simplify{{j[3]}{j[4]}}+\\simplify{{j[6]}{j[7]}})x-(\\simplify{{j[0]}{j[2]}}+\\simplify{{j[3]}{j[5]}}+\\simplify{{j[6]}{j[8]}})y\\\\
&= \\simplify{({j[0]}*{j[1]}+{j[4]*j[3]}+{j[6]}*{j[7]})x}-\\simplify{({j[0]}*{j[2]}+{j[5]}{j[3]}+{j[6]}*{j[8]})y}
\\end{align}
\\]
random variables for part 1
", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Part a", "definition": "repeat(random(2..10),5)", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Part a", "definition": "repeat(random(2..15),7)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "B group", "variables": ["a1", "b1", "c1"]}, {"name": "Part a", "variables": ["a", "b", "c", "d", "f", "g", "h", "j"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{c[0]}x+\\var{c[1]}x+\\var{c[2]}x=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({c[1]}+{c[0]}+{c[2]})x", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "0", "partialCredit": 0, "message": "You must collect like terms to fully simplify.
"}, "mustmatchpattern": {"pattern": "$n*x", "partialCredit": 0, "message": "You haven't simplified: you still have two or more like terms that should be collected together.", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
$\\var{a[1]}x^2+\\var{a[2]}x^2+\\var{a[3]}x+\\var{a[4]}x +\\var{a[0]}=$ [[0]]
$\\var{g[0]}(\\var{g[1]}x+\\var{g[2]}y)=$ [[0]]
\n", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({g[0]}{g[1]})x+({g[0]}{g[2]})y", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "0", "partialCredit": 0, "message": "You must condense your answer to fully simplify. *'s are not needed to indicate multiplication here.
"}, "mustmatchpattern": {"pattern": "$n*x+$n*y", "partialCredit": 0, "message": "You haven't simplified: you still have two or more like terms that should be collected together.", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Solve for $x$:
\n$\\var{j[6]+1} x + \\var{j[7]}= \\var{j[0]}$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({j[0]-j[7]})/({j[6]}+1)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "0", "partialCredit": 0, "message": "You must condense your answer to fully simplify. *'s are not needed to indicate multiplication here.
"}, "mustmatchpattern": {"pattern": "`+-$n/$n", "partialCredit": 0, "message": "You haven't simplified: you still have two or more like terms that should be collected together.", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Solve for $x$:
\n$\\var{j[5]+1} x + \\var{j[6]}a= \\var{j[2]}$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({j[2]}-{j[6]}a)/({j[5]}+1)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "0", "partialCredit": 0, "message": "You must condense your answer to fully simplify. *'s are not needed to indicate multiplication here.
"}, "valuegenerators": [{"name": "a", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": false, "timeout": {"action": "warn", "message": "Time has run out.
"}, "timedwarning": {"action": "warn", "message": "5 minutes before time runs out.
"}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "inreview", "showtotalmarkwhen": "inreview", "showanswerstatewhen": "inreview", "showpartfeedbackmessageswhen": "inreview", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": false, "intro": "Instructions:
\n| 1. | \nComplete the questions within 90 minutes and achieve 80% or higher. | \n
| 2. | \nYou can take this self-assessment as many times as you need, until you receive a satisfactory grade (you don't need to achieve 80% when you 'give it a go' the first time) | \n
| 3. | \nUse the \"Print this results summary\" and save as a pdf after you complete your attempt. You will need the printout showing all questions for your module submission. | \n
Congratulations! You have achieved the minimum threshold for this module's self-assessment.
\nUse the \"Print this results summary\" and save your attempt as a pdf. You will need the printout showing all questions for your module submission.
", "threshold": "80"}, {"message": "Unfortunately you have not achieved the minimum score.
\nIf this is your first 'Give it a go' attempt - don't despair! This is exactly why we take our first attempt - to see how we're going and whether we need more practice in order to complete the quest.
\nYou should still use the \"Print this results summary\" option to save a copy of your results as a pdf, which will help with your learning and can also be shared with your tutors so they can help with certain questions.
\n