// Numbas version: finer_feedback_settings {"name": "SIT190 - Module 4 - Self-assessment", "metadata": {"description": "", "licence": "None specified"}, "duration": 5400, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", ""], "variable_overrides": [[], [], [], [], []], "questions": [{"name": "4.1 Index laws", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Questions testing rather basic understanding of the index laws.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "

(a) Add the powers: $\\var{m} + \\var{n}=\\var{m+n}$ (first index law).

\n

(b) Multiply the powers $\\var{m1} \\times \\var{n1}=\\var{m1*n1}$ (second index law).

\n

(c) Multiply $\\var{xx}$ and $\\var{y}$ to get $\\var{xx*y}$, with the power unchanged at $\\var{t}$. [This is the only way for the power to be a prime.]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"xx": {"name": "xx", "group": "Ungrouped variables", "definition": "random(3,6,9,10,12,13,16,18,20,21)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..12 except m)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2,3,5,7)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..5 except [m1,n])", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(8..20)", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(2,3,5,7,11,13,17)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(4,5,7,8,11,14,15,17,19,23)", "description": "", "templateType": "anything", "can_override": false}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "random(2..5 except m)", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "random(3..15 except x2)", "description": "", "templateType": "anything", "can_override": false}, "x3": {"name": "x3", "group": "Ungrouped variables", "definition": "random(3..15)", "description": "", "templateType": "anything", "can_override": false}, "y3": {"name": "y3", "group": "Ungrouped variables", "definition": "random(3..15 except x3)", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "random(-15..15 except 0)", "description": "", "templateType": "anything", "can_override": false}, "m31": {"name": "m31", "group": "Ungrouped variables", "definition": "random(-5,-3,-1,1,3,5,7,9,11)", "description": "", "templateType": "anything", "can_override": false}, "m32": {"name": "m32", "group": "Ungrouped variables", "definition": "random(2,4,6,8,10,12,14,16)", "description": "", "templateType": "anything", "can_override": false}, "x4": {"name": "x4", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "templateType": "anything", "can_override": false}, "m41": {"name": "m41", "group": "Ungrouped variables", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}, "m42": {"name": "m42", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "x5": {"name": "x5", "group": "Ungrouped variables", "definition": "random(3..15)", "description": "", "templateType": "anything", "can_override": false}, "m52": {"name": "m52", "group": "Ungrouped variables", "definition": "random(4..19)", "description": "", "templateType": "anything", "can_override": false}, "m51": {"name": "m51", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}, "kk1": {"name": "kk1", "group": "Ungrouped variables", "definition": "random(2,3,5,6,7)", "description": "", "templateType": "anything", "can_override": false}, "xx1": {"name": "xx1", "group": "Ungrouped variables", "definition": "random(2..8 except kk1)", "description": "", "templateType": "anything", "can_override": false}, "d8": {"name": "d8", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "n8": {"name": "n8", "group": "Ungrouped variables", "definition": "random(-8..-4)", "description": "", "templateType": "anything", "can_override": false}, "n88": {"name": "n88", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "k8": {"name": "k8", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "m8": {"name": "m8", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "m9": {"name": "m9", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "n99": {"name": "n99", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "k9": {"name": "k9", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "n9": {"name": "n9", "group": "Ungrouped variables", "definition": "random(-8..-4)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "t1": {"name": "t1", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "templateType": "anything", "can_override": false}, "d55": {"name": "d55", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "c55": {"name": "c55", "group": "Ungrouped variables", "definition": "random(-3..3)", "description": "", "templateType": "anything", "can_override": false}, "b55": {"name": "b55", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "a55": {"name": "a55", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "t55": {"name": "t55", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "templateType": "anything", "can_override": false}, "n55": {"name": "n55", "group": "Ungrouped variables", "definition": "t55*f55", "description": "", "templateType": "anything", "can_override": false}, "f55": {"name": "f55", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "m55": {"name": "m55", "group": "Ungrouped variables", "definition": "a55*f55+b55*c55*f55*t55-d55*t55", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "m", "n", "m1", "t", "n1", "y", "xx", "x2", "y2", "x3", "y3", "m2", "m31", "m32", "x4", "m41", "m42", "x5", "m52", "m51", "kk1", "xx1", "d8", "n8", "n88", "k8", "m8", "m9", "n99", "k9", "n9", "a1", "t1", "d55", "c55", "b55", "a55", "t55", "n55", "f55", "m55"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Express the following as a single power of $\\var{a}$,

\n

\\[\\var{a}^{\\var{m}} \\times \\var{a}^{\\var{n}}\\]

\n

Write in your answer as e.g., \"{a}^2\" for $\\var{a}^2$

\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a}^{m+n}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.0001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input as a fraction or an integer, not as a decimal.

"}, "mustmatchpattern": {"pattern": "?^?", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "input"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Express the following as a single power of $\\var{b}$:

\n

\\[(\\var{b}^{\\var{m1}})^{\\var{n1}}\\]

\n

Write your answer as, e.g. \"{b}^2\" for $\\var{b}^2$

\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b}^{m1*n1}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.0001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input as a fraction or an integer, not as a decimal.

"}, "mustmatchpattern": {"pattern": "?^?", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "input"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Simplify and express as a power of $\\var{x5}:$

\n

\n

${\\frac{1}{\\var{x5}^\\var{m52}}}$    = [[0]]

\n

 

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{x5}^{-m52}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "?^?", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "input"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Simplify and write in the form  $a \\sqrt{b}$ so that b is not a multiple of a square number. 

\n

Enter your answer in the form \"a*sqrt(b)\", e.g., write 3*sqrt(2) for $3\\sqrt{2}$)

\n

\n

$\\sqrt{\\simplify{({xx1}^2)*{kk1}}} $    = [[0]]

\n

 

\n

 

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{xx1}*sqrt({kk1})", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "$n;a * sqrt( $n;b ) `where b < 8", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "4.2 exponential functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Questions testing rather basic understanding of the index laws.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Exponential functions $y = k a^x.$ Growth or decay, x-y intercepts.

", "advice": "", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(3,6,9,10,12,13,16,18,20,21)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..12 except m)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random([2,4,6,8,10])", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..12 except [m1,n])", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random([1,3,5,7,9,11])", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(2,3,5,7,11,13,17)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(4,5,7,8,11,14,15,17,19,23)", "description": "", "templateType": "anything", "can_override": false}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "random(2..9 except m)", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "random(3..15 except x2)", "description": "", "templateType": "anything", "can_override": false}, "x3": {"name": "x3", "group": "Ungrouped variables", "definition": "random(3..15)", "description": "", "templateType": "anything", "can_override": false}, "y3": {"name": "y3", "group": "Ungrouped variables", "definition": "random(3..15 except x3)", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "random(-5..-5 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "m31": {"name": "m31", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "m32": {"name": "m32", "group": "Ungrouped variables", "definition": "random(2..15 except m31)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "s0": {"name": "s0", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "m", "n", "m1", "t", "n1", "y", "x", "x2", "y2", "x3", "y3", "m31", "m32", "m2", "a2", "b2", "s0"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Identify if the graph $y=\\var{m} e^x$ is exponential growth or decay (or increasing decreasing function)

\n


[[0]]

\n

Does it have an x intercept

\n

[[1]]

\n

\n

What is the y intercept

\n

[[2]]

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["Exponential growth", "Exponential decay", "Constant"], "matrix": ["1", "0", "0"], "distractors": ["", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": [0, "1"], "distractors": ["", ""]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{m}", "maxValue": "{m}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "4.3 Addition and Subtraction of Logarithms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Aiden McCall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1592/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Use laws for addition and subtraction of logarithms to simplify a given logarithmic expression to an arbitrary base.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Simplify the expressions to fill in the gaps.

", "advice": "

a)

\n

We need to use the rule

\n

\\[\\log_a(x)+\\log_a(y)=\\log_a(xy)\\text{.}\\]

\n

Substituting in our values for $x$ and $y$ gives

\n

\\[\\begin{align}
\\log_a(\\var{x1[1]})+\\log_a(\\var{x1[0]})&=\\log_a(\\var{x1[1]}\\times \\var{x1[0]})\\\\
&=\\log_a(\\var{x1[1]*x1[0]})\\text{.}
\\end{align}\\]

\n

\n

b)

\n

We need to use the rule

\n

\\[\\log_a(x)-\\log_a(y)=\\log_a\\left(\\frac{x}{y}\\right)\\text{.}\\]

\n

Substituting in our values for $x$ and $y$ gives

\n

\\[\\begin{align}
\\log_a(\\var{x1[4]*y1})-\\log_a(\\var{x1[4]})&=\\log_a(\\var{x1[4]*y1}\\div \\var{x1[4]})\\\\
&=\\log_a(\\var{y1})\\text{.}
\\end{align}\\]

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"y1": {"name": "y1", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "repeat(random(2..20),30)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x1", "y1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\log_a(\\var{x1[1]})+ \\log_a(\\var{x1[0]})=\\log_a($ [[0]]$)$

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

When adding and subtracting logarithms we can simplify the expressions using some logarithm laws. These laws are

\n

\\[\\begin{align}
\\log_a(x)+\\log_a(y)&=\\log_a(xy)\\text{,}\\\\
\\log_a(x)-\\log_a(y)&=\\log_a\\left(\\frac{x}{y}\\right)\\text{.}
\\end{align}\\]

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "x1[1]*x1[0]", "maxValue": "x1[1]*x1[0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\log_a(\\var{(x1[4])*y1})-\\log_a(\\var{x1[4]})=\\log_a($ [[0]]$)$

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

When adding and subtracting logarithms we can simplify the expressions using some logarithm laws. These laws are

\n

\\[\\begin{align}
\\log_a(x)+\\log_a(y)&=\\log_a(xy)\\text{,}\\\\
\\log_a(x)-\\log_a(y)&=\\log_a\\left(\\frac{x}{y}\\right)\\text{.}
\\end{align}\\]

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "y1", "maxValue": "y1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ \\log_a (\\var{x1[5]}^\\var{x1[6]}) $ = [[0]]$\\log_a$ ([[1]])

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

When adding and subtracting logarithms we can simplify the expressions using some logarithm laws. These laws are

\n

\\[\\begin{align}
p \\log_a(x) &=\\log_a(x^p)\\text{.}\\\\
\\end{align}\\]

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "x1[6]", "maxValue": "x1[6]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "x1[5]", "maxValue": "x1[5]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "4.4 logarithmic functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Questions testing rather basic understanding of the index laws.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Exponential functions $y = \\log_k (ax).$ Growth or decay, x-y intercepts.

", "advice": "", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(3,6,9,10,12,13,16,18,20,21)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..12 except m)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..10 except a)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..12 except [m1,n])", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(2,3,5,7,11,13,17)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(4,5,7,8,11,14,15,17,19,23)", "description": "", "templateType": "anything", "can_override": false}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "random(2..9 except m)", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "random(3..15 except x2)", "description": "", "templateType": "anything", "can_override": false}, "x3": {"name": "x3", "group": "Ungrouped variables", "definition": "random(3,5,7,9)", "description": "", "templateType": "anything", "can_override": false}, "y3": {"name": "y3", "group": "Ungrouped variables", "definition": "random(2,4,6,8,10,12)", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "random(-5..-2)", "description": "", "templateType": "anything", "can_override": false}, "m31": {"name": "m31", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "m32": {"name": "m32", "group": "Ungrouped variables", "definition": "random(2..15 except m31)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(2..10 except a2)", "description": "", "templateType": "anything", "can_override": false}, "s0": {"name": "s0", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "m33": {"name": "m33", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "m", "n", "m1", "t", "n1", "y", "x", "x2", "y2", "x3", "y3", "m31", "m32", "m2", "a2", "b2", "s0", "m33"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Identify if the graph $y= \\ln (\\var{m} x)$ is increasing or decreasing.

\n


[[0]]

\n

Does it have a y intercept

\n

[[1]]

\n

What is the x intercept

\n

[[2]]

\n

The domain is (use the first box for the sign (>, >=, < or <=), and then write a number in the second box):

\n

$x$[[3]][[4]]

\n

The range is (write in the the boxes as: value (or -infinity),  sign (< or <=), $y$, sign (< or <=), value (or infinity):

\n

[[5]][[6]]$y$[[7]][[8]]

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["Increasing", "Decreasing", "Neither"], "matrix": ["1", "0", "0"], "distractors": ["", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": ["0", "1"], "distractors": ["", ""]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "1/{m}", "maxValue": "1/{m}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": ">", "displayAnswer": ">", "caseSensitive": true, "partialCredit": 0, "matchMode": "exact", "allowEmpty": false}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "0.25", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-infinity", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": "0.25", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "<", "displayAnswer": "Less than", "matchMode": "regex", "allowEmpty": false}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": "0.25", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "<", "displayAnswer": "Less than", "matchMode": "regex", "allowEmpty": false}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "0.25", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "infinity", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "4.5 Solve a logarithmic equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Solve a logarithmic equation

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Solve the following logarithmic equations

\n

", "advice": "

\\(\\var{a}log(\\var{b}x+\\var{c})=\\var{d}\\)

\n

Divide across by \\(\\var{a}\\)

\n

\\(log(\\var{b}x+\\var{c})=\\var{d}/\\var{a}=\\simplify{{d}/{a}}\\)

\n

\\(\\var{b}x+\\var{c}=10^{\\simplify{{d}/{a}}}\\)

\n

\\(\\var{b}x+\\var{c}=\\simplify{10^{{d}/{a}}}\\)

\n

\\(\\var{b}x=\\simplify{10^{{d}/{a}}}-\\var{c}\\)

\n

\\(\\var{b}x=\\simplify{10^{{d}/{a}}-{c}}\\)

\n

\\(x=\\simplify{(10^{{d}/{a}}-{c})/{b}}\\)

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 8#1)", "description": "", "templateType": "randrange", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(2,5)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(1..16)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "d3": {"name": "d3", "group": "Ungrouped variables", "definition": "random(-4..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "a2", "b2", "c2", "d2", "a3", "b3", "c3", "d3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given the following logarithmic equation:

\n

\\(y=\\log_\\var{a2} (\\var{b2}x+\\var{c2}))\\)

\n

calculate the value of \\(x\\) that satisfies the equation when  \\(y=\\var{d2}\\).

\n

Input your answer correct to three decimal places.

\n

\\(x = \\) [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "((a2^(d2))-c2)/b2", "maxValue": "((a2^(d2))-c2)/b2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "warn", "message": "

Time has run out

"}, "timedwarning": {"action": "warn", "message": "

Time will run out in 5 minutes

"}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "inreview", "showtotalmarkwhen": "inreview", "showanswerstatewhen": "inreview", "showpartfeedbackmessageswhen": "inreview", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": false, "intro": "

Instructions:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
1. Complete the questions within 90 minutes and achieve 80% or higher.
2. You can take this self-assessment as many times as you need, until you receive a satisfactory grade (you don't need to achieve 80% when you 'give it a go' the first time)
3. Use the \"Print this results summary\" and save as a pdf after you complete your attempt.  You will need the printout showing all questions for your module submission.
", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [{"message": "

Congratulations! You have achieved the minimum threshold for this module's self-assessment.

\n

Use the \"Print this results summary\" and save your attempt as a pdf.  You will need the printout showing all questions for your module submission.

", "threshold": "80"}, {"message": "

Unfortunately you have not achieved the minimum score.

\n

If this is your first 'Give it a go' attempt - don't despair! This is exactly why we take our first attempt - to see how we're going and whether we need more practice in order to complete the quest.

\n

You should still use the \"Print this results summary\" option to save a copy of your results as a pdf, which will help with your learning and can also be shared with your tutors so they can help with certain questions.

\n
If you have tried this test several times and have not been able to pass, then it is strongly advised that you attend class to go over your results with the teaching team. You can attempt the quiz while in class, and discuss your results with the tutors. Do not attempt to try to solve this quiz on your own without understanding your mistakes first. You will likely end up spending far more time than necessary on the module.
", "threshold": 0}], "reviewshowexpectedanswer": true, "showanswerstate": false, "reviewshowfeedback": true, "showactualmark": false, "showtotalmark": false, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "extensions": [], "custom_part_types": [], "resources": []}