// Numbas version: finer_feedback_settings {"name": "SIT190 - Week 5 - Quiz - Short", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questions": [{"name": "Musa's copy of 3 Index laws", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Questions testing rather basic understanding of the index laws.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "

(a) Add the powers: $\\var{m} + \\var{n}=\\var{m+n}$ (first index law).

\n

(b) Multiply the powers $\\var{m1} \\times \\var{n1}=\\var{m1*n1}$ (second index law).

\n

(c) Multiply $\\var{xx}$ and $\\var{y}$ to get $\\var{xx*y}$, with the power unchanged at $\\var{t}$. [This is the only way for the power to be a prime.]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variables": {"xx": {"name": "xx", "group": "Ungrouped variables", "definition": "random(3,6,9,10,12,13,16,18,20,21)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..12 except m)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2,3,5,7)", "description": "", "templateType": "anything"}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything"}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..12 except [m1,n])", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(8..20)", "description": "", "templateType": "anything"}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(2,3,5,7,11,13,17)", "description": "", "templateType": "anything"}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(4,5,7,8,11,14,15,17,19,23)", "description": "", "templateType": "anything"}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "random(2..9 except m)", "description": "", "templateType": "anything"}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything"}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "random(3..15 except x2)", "description": "", "templateType": "anything"}, "x3": {"name": "x3", "group": "Ungrouped variables", "definition": "random(3..15)", "description": "", "templateType": "anything"}, "y3": {"name": "y3", "group": "Ungrouped variables", "definition": "random(3..15 except x3)", "description": "", "templateType": "anything"}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "random(-15..15 except 0)", "description": "", "templateType": "anything"}, "m31": {"name": "m31", "group": "Ungrouped variables", "definition": "random(-5,-3,-1,1,3,5,7,9,11)", "description": "", "templateType": "anything"}, "m32": {"name": "m32", "group": "Ungrouped variables", "definition": "random(2,4,6,8,10,12,14,16)", "description": "", "templateType": "anything"}, "x4": {"name": "x4", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "templateType": "anything"}, "m41": {"name": "m41", "group": "Ungrouped variables", "definition": "random(6..15)", "description": "", "templateType": "anything"}, "m42": {"name": "m42", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "x5": {"name": "x5", "group": "Ungrouped variables", "definition": "random(3..15)", "description": "", "templateType": "anything"}, "m52": {"name": "m52", "group": "Ungrouped variables", "definition": "random(4..19)", "description": "", "templateType": "anything"}, "m51": {"name": "m51", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything"}, "kk1": {"name": "kk1", "group": "Ungrouped variables", "definition": "random(2,3,5,6,7)", "description": "", "templateType": "anything"}, "xx1": {"name": "xx1", "group": "Ungrouped variables", "definition": "random(2..8 except kk1)", "description": "", "templateType": "anything"}, "d8": {"name": "d8", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "n8": {"name": "n8", "group": "Ungrouped variables", "definition": "random(-8..-4)", "description": "", "templateType": "anything"}, "n88": {"name": "n88", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything"}, "k8": {"name": "k8", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "m8": {"name": "m8", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "m9": {"name": "m9", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "n99": {"name": "n99", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything"}, "k9": {"name": "k9", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "n9": {"name": "n9", "group": "Ungrouped variables", "definition": "random(-8..-4)", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "t1": {"name": "t1", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "templateType": "anything"}, "d55": {"name": "d55", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "c55": {"name": "c55", "group": "Ungrouped variables", "definition": "random(-3..3)", "description": "", "templateType": "anything"}, "b55": {"name": "b55", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything"}, "a55": {"name": "a55", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "t55": {"name": "t55", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "templateType": "anything"}, "n55": {"name": "n55", "group": "Ungrouped variables", "definition": "t55*f55", "description": "", "templateType": "anything"}, "f55": {"name": "f55", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "m55": {"name": "m55", "group": "Ungrouped variables", "definition": "a55*f55+b55*c55*f55*t55-d55*t55", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "m", "n", "m1", "t", "n1", "y", "xx", "x2", "y2", "x3", "y3", "m2", "m31", "m32", "x4", "m41", "m42", "x5", "m52", "m51", "kk1", "xx1", "d8", "n8", "n88", "k8", "m8", "m9", "n99", "k9", "n9", "a1", "t1", "d55", "c55", "b55", "a55", "t55", "n55", "f55", "m55"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Express the following as a single power of $\\var{a}$:

\n

\\[\\var{a}^{\\var{m}} \\times \\var{a}^{\\var{n}}\\]

\n

Enter the power [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{m+n}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.0001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input as a fraction or an integer, not as a decimal.

"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Express the following as a single power of $\\var{b}$:

\n

\\[(\\var{b}^{\\var{m1}})^{\\var{n1}}\\]

\n

Enter the power [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{m1*n1}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.0001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input as a fraction or an integer, not as a decimal.

"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Simplify as power of   $\\var{x5}:$

\n

\n

${\\frac{1}{\\var{x5}^\\var{m52}}}$    = [[0]]

\n

 

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{x5}^{-m52}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Simplify as in the form  $a \\sqrt{b}$ such that b is not a square number (use \"sqrt\" for square root):

\n

\n

$\\sqrt{\\simplify{({xx1}^2)*{kk1}}} $    = [[0]]

\n

 

\n

 

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{xx1}*sqrt({kk1})", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 exponential functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Questions testing rather basic understanding of the index laws.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Exponential functions $y = k a^x.$ Growth or decay, x-y intercepts.

", "advice": "", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(3,6,9,10,12,13,16,18,20,21)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..12 except m)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random([2,4,6,8,10])", "description": "", "templateType": "anything"}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..12 except [m1,n])", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random([1,3,5,7,9,11])", "description": "", "templateType": "anything"}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(2,3,5,7,11,13,17)", "description": "", "templateType": "anything"}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(4,5,7,8,11,14,15,17,19,23)", "description": "", "templateType": "anything"}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "random(2..9 except m)", "description": "", "templateType": "anything"}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything"}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "random(3..15 except x2)", "description": "", "templateType": "anything"}, "x3": {"name": "x3", "group": "Ungrouped variables", "definition": "random(3..15)", "description": "", "templateType": "anything"}, "y3": {"name": "y3", "group": "Ungrouped variables", "definition": "random(3..15 except x3)", "description": "", "templateType": "anything"}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "random(-5..-5 except [-1,0,1])", "description": "", "templateType": "anything"}, "m31": {"name": "m31", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything"}, "m32": {"name": "m32", "group": "Ungrouped variables", "definition": "random(2..15 except m31)", "description": "", "templateType": "anything"}, "": {"name": "", "group": "Ungrouped variables", "definition": "", "description": "", "templateType": "anything"}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything"}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything"}, "s0": {"name": "s0", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "m", "n", "m1", "t", "n1", "y", "x", "x2", "y2", "x3", "y3", "m31", "m32", "", "m2", "a2", "b2", "s0"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Identify if the graph $y=\\var{m} e^x$ is exponential growth or decay (or increasing decreasing function)

\n


[[0]]

\n

Does it have an x intercept

\n

[[1]]

\n

\n

What is the y intercept

\n

[[2]]

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Exponential growth", "Exponential decay", "Constant"], "matrix": ["1", "0", "0"], "distractors": ["", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": [0, "1"], "distractors": ["", ""]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "{m}", "maxValue": "{m}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 Addition and Subtraction of Logarithms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Aiden McCall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1592/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Use laws for addition and subtraction of logarithms to simplify a given logarithmic expression to an arbitrary base.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Simplify the expressions to fill in the gaps.

", "advice": "

a)

\n

We need to use the rule

\n

\\[\\log_a(x)+\\log_a(y)=\\log_a(xy)\\text{.}\\]

\n

Substituting in our values for $x$ and $y$ gives

\n

\\[\\begin{align}
\\log_a(\\var{x1[1]})+\\log_a(\\var{x1[0]})&=\\log_a(\\var{x1[1]}\\times \\var{x1[0]})\\\\
&=\\log_a(\\var{x1[1]*x1[0]})\\text{.}
\\end{align}\\]

\n

\n

b)

\n

We need to use the rule

\n

\\[\\log_a(x)-\\log_a(y)=\\log_a\\left(\\frac{x}{y}\\right)\\text{.}\\]

\n

Substituting in our values for $x$ and $y$ gives

\n

\\[\\begin{align}
\\log_a(\\var{x1[4]*y1})-\\log_a(\\var{x1[4]})&=\\log_a(\\var{x1[4]*y1}\\div \\var{x1[4]})\\\\
&=\\log_a(\\var{y1})\\text{.}
\\end{align}\\]

\n

", "rulesets": {}, "variables": {"y1": {"name": "y1", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "repeat(random(2..20),30)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x1", "y1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\log_a(\\var{x1[1]})+ \\log_a(\\var{x1[0]})=\\log_a($ [[0]]$)$

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

When adding and subtracting logarithms we can simplify the expressions using some logarithm laws. These laws are

\n

\\[\\begin{align}
\\log_a(x)+\\log_a(y)&=\\log_a(xy)\\text{,}\\\\
\\log_a(x)-\\log_a(y)&=\\log_a\\left(\\frac{x}{y}\\right)\\text{.}
\\end{align}\\]

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "x1[1]*x1[0]", "maxValue": "x1[1]*x1[0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\log_a(\\var{(x1[4])*y1})-\\log_a(\\var{x1[4]})=\\log_a($ [[0]]$)$

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

When adding and subtracting logarithms we can simplify the expressions using some logarithm laws. These laws are

\n

\\[\\begin{align}
\\log_a(x)+\\log_a(y)&=\\log_a(xy)\\text{,}\\\\
\\log_a(x)-\\log_a(y)&=\\log_a\\left(\\frac{x}{y}\\right)\\text{.}
\\end{align}\\]

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "y1", "maxValue": "y1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$ \\log_a (\\var{x1[5]}^\\var{x1[6]}) $ = [[0]]$\\log_a$ ([[1]])

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

When adding and subtracting logarithms we can simplify the expressions using some logarithm laws. These laws are

\n

\\[\\begin{align}
p \\log_a(x) &=\\log_a(x^p)\\text{.}\\\\
\\end{align}\\]

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "x1[6]", "maxValue": "x1[6]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "x1[5]", "maxValue": "x1[5]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's 3 logarithmic functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Questions testing rather basic understanding of the index laws.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Exponential functions $y = \\log_k (ax).$ Growth or decay, x-y intercepts.

", "advice": "", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(3,6,9,10,12,13,16,18,20,21)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..12 except m)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..10 except a)", "description": "", "templateType": "anything"}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..12 except [m1,n])", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything"}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(2,3,5,7,11,13,17)", "description": "", "templateType": "anything"}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(4,5,7,8,11,14,15,17,19,23)", "description": "", "templateType": "anything"}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "random(2..9 except m)", "description": "", "templateType": "anything"}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything"}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "random(3..15 except x2)", "description": "", "templateType": "anything"}, "x3": {"name": "x3", "group": "Ungrouped variables", "definition": "random(3,5,7,9)", "description": "", "templateType": "anything"}, "y3": {"name": "y3", "group": "Ungrouped variables", "definition": "random(2,4,6,8,10,12)", "description": "", "templateType": "anything"}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "random(-5..-2)", "description": "", "templateType": "anything"}, "m31": {"name": "m31", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything"}, "m32": {"name": "m32", "group": "Ungrouped variables", "definition": "random(2..15 except m31)", "description": "", "templateType": "anything"}, "": {"name": "", "group": "Ungrouped variables", "definition": "", "description": "", "templateType": "anything"}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything"}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(2..10 except a2)", "description": "", "templateType": "anything"}, "s0": {"name": "s0", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything"}, "m33": {"name": "m33", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "m", "n", "m1", "t", "n1", "y", "x", "x2", "y2", "x3", "y3", "m31", "m32", "", "m2", "a2", "b2", "s0", "m33"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Identify if the graph $y= \\ln (\\var{m} x)$ is increasing or decreasing.

\n


[[0]]

\n

Does it have an y intercept

\n

[[1]]

\n

What is the x intercept

\n

[[2]]

\n

Domain is (put as $x$, first box for sign (>, >=, < or <=), socond box - value):

\n

$x$[[3]][[4]]

\n

Range is (put in boxes: value (or -infinity),  sign (< or <=), $y$, sign (< or <=), value (or infinity):

\n

[[5]][[6]]$y$[[7]][[8]]

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Increasing", "Decreasing", "Neither"], "matrix": ["1", "0", "0"], "distractors": ["", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": ["0", "1"], "distractors": ["", ""]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "1/{m}", "maxValue": "1/{m}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": "0.5", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": ">", "displayAnswer": ">", "caseSensitive": true, "partialCredit": 0, "matchMode": "exact"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "0.25", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "-infinity", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": "0.25", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "<", "displayAnswer": "Less than", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": "0.25", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "<", "displayAnswer": "Less than", "matchMode": "regex"}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "0.25", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "infinity", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 Solve a logarithmic equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Solve a logarithmic equation

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Solve the following logarithmic equations

\n

", "advice": "

\\(\\var{a}log(\\var{b}x+\\var{c})=\\var{d}\\)

\n

Divide across by \\(\\var{a}\\)

\n

\\(log(\\var{b}x+\\var{c})=\\var{d}/\\var{a}=\\simplify{{d}/{a}}\\)

\n

\\(\\var{b}x+\\var{c}=10^{\\simplify{{d}/{a}}}\\)

\n

\\(\\var{b}x+\\var{c}=\\simplify{10^{{d}/{a}}}\\)

\n

\\(\\var{b}x=\\simplify{10^{{d}/{a}}}-\\var{c}\\)

\n

\\(\\var{b}x=\\simplify{10^{{d}/{a}}-{c}}\\)

\n

\\(x=\\simplify{(10^{{d}/{a}}-{c})/{b}}\\)

", "rulesets": {}, "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 8#1)", "description": "", "templateType": "randrange"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange"}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(2,5)", "description": "", "templateType": "anything"}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything"}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(1..16)", "description": "", "templateType": "anything"}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything"}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "d3": {"name": "d3", "group": "Ungrouped variables", "definition": "random(-4..4)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "a2", "b2", "c2", "d2", "a3", "b3", "c3", "d3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Given the following logarithmic equation:

\n

\\(y=\\log_\\var{a2} (\\var{b2}x+\\var{c2}))\\)

\n

calculate the value of \\(x\\) that satisfies the equation when  \\(y=\\var{d2}\\).

\n

Input your answer correct to three decimal places.

\n

\\(x = \\) [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "((a2^(d2))-c2)/b2", "maxValue": "((a2^(d2))-c2)/b2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "type": "question"}]}], "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "type": "exam", "contributors": [{"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "extensions": [], "custom_part_types": [], "resources": []}