// Numbas version: finer_feedback_settings {"name": "SIT190 - Module 6 - Self-assessment", "metadata": {"description": "", "licence": "None specified"}, "duration": 5400, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", ""], "variable_overrides": [[], [], [], [], []], "questions": [{"name": "6.1 Rate of change", "extensions": [], "custom_part_types": [], "resources": ["question-resources/Picture_curve.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Rate of change problem involving velocity & acceleration

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(100 .. 300#5)", "description": "", "templateType": "randrange", "can_override": false}, "x0": {"name": "x0", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything", "can_override": false}, "y0": {"name": "y0", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "x0+random(4..12)", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "y0+random(4..12)", "description": "", "templateType": "anything", "can_override": false}, "t2": {"name": "t2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "km2": {"name": "km2", "group": "Ungrouped variables", "definition": "t2*v2", "description": "", "templateType": "anything", "can_override": false}, "v2": {"name": "v2", "group": "Ungrouped variables", "definition": "random(55..89)", "description": "", "templateType": "anything", "can_override": false}, "t3": {"name": "t3", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "km3": {"name": "km3", "group": "Ungrouped variables", "definition": "t3*random(35..59)", "description": "", "templateType": "anything", "can_override": false}, "sec3": {"name": "sec3", "group": "Ungrouped variables", "definition": "random(10,12,15,20,30,40,45)", "description": "", "templateType": "anything", "can_override": false}, "sec4": {"name": "sec4", "group": "Ungrouped variables", "definition": "random(10,12,15,20,30,40,45)", "description": "", "templateType": "anything", "can_override": false}, "tem40": {"name": "tem40", "group": "Ungrouped variables", "definition": "random(10..38)", "description": "", "templateType": "anything", "can_override": false}, "tem41": {"name": "tem41", "group": "Ungrouped variables", "definition": "random(10..38)", "description": "", "templateType": "anything", "can_override": false}, "t4": {"name": "t4", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything", "can_override": false}, "aa": {"name": "aa", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "bb": {"name": "bb", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "bb2": {"name": "bb2", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "aa2": {"name": "aa2", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "x0", "y0", "x1", "y1", "t2", "km2", "v2", "t3", "km3", "sec3", "sec4", "tem40", "tem41", "t4", "aa", "bb", "bb2", "aa2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\n

Calculate the average rate of change over an interval in a graph between points $(x0,y0) = (\\var{x0},\\var{y0})$ and $(x1,y1)= (\\var{x1},\\var{y1})$

\n

Average rate = [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({y1}-{y0})/({x1}-{x0})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If it takes {t2} hours to drive a distance of {km2} km on a motorway, what would be your average speed in km/h?

\n

Average speed = [[0]] km/h

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{v2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "6.2 simple derivatives", "extensions": [], "custom_part_types": [], "resources": ["question-resources/Picture_curve.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Simple derivatives

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(100 .. 300#5)", "description": "", "templateType": "randrange", "can_override": false}, "x0": {"name": "x0", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything", "can_override": false}, "y0": {"name": "y0", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "x0+random(4..12)", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "y0+random(4..12)", "description": "", "templateType": "anything", "can_override": false}, "t2": {"name": "t2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "km2": {"name": "km2", "group": "Ungrouped variables", "definition": "t2*v2", "description": "", "templateType": "anything", "can_override": false}, "v2": {"name": "v2", "group": "Ungrouped variables", "definition": "random(55..89)", "description": "", "templateType": "anything", "can_override": false}, "t3": {"name": "t3", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "km3": {"name": "km3", "group": "Ungrouped variables", "definition": "t3*random(35..59)", "description": "", "templateType": "anything", "can_override": false}, "sec3": {"name": "sec3", "group": "Ungrouped variables", "definition": "random(10,12,15,20,30,40,45)", "description": "", "templateType": "anything", "can_override": false}, "sec4": {"name": "sec4", "group": "Ungrouped variables", "definition": "random(10,12,15,20,30,40,45)", "description": "", "templateType": "anything", "can_override": false}, "tem40": {"name": "tem40", "group": "Ungrouped variables", "definition": "random(10..38)", "description": "", "templateType": "anything", "can_override": false}, "tem41": {"name": "tem41", "group": "Ungrouped variables", "definition": "random(10..38)", "description": "", "templateType": "anything", "can_override": false}, "t4": {"name": "t4", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything", "can_override": false}, "aa": {"name": "aa", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "bb": {"name": "bb", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "bb2": {"name": "bb2", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "aa2": {"name": "aa2", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "nn": {"name": "nn", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "nn1": {"name": "nn1", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "templateType": "anything", "can_override": false}, "nn2": {"name": "nn2", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "nn3": {"name": "nn3", "group": "Ungrouped variables", "definition": "random(2..9 except nn2)", "description": "", "templateType": "anything", "can_override": false}, "ann": {"name": "ann", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "ann1": {"name": "ann1", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "ann23": {"name": "ann23", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "cnn23": {"name": "cnn23", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "ann4": {"name": "ann4", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "bnn4": {"name": "bnn4", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "cnn4": {"name": "cnn4", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "nn4": {"name": "nn4", "group": "Ungrouped variables", "definition": "random(4..8)", "description": "", "templateType": "anything", "can_override": false}, "nn5": {"name": "nn5", "group": "Ungrouped variables", "definition": "random(2..3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "x0", "y0", "x1", "y1", "t2", "km2", "v2", "t3", "km3", "sec3", "sec4", "tem40", "tem41", "t4", "aa", "bb", "bb2", "aa2", "nn", "nn1", "nn2", "nn3", "ann", "ann1", "ann23", "cnn23", "ann4", "bnn4", "cnn4", "nn4", "nn5"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find derivative of $y=\\var{ann4}x^\\var{nn4}+\\var{bnn4}x^\\var{nn5} +\\var{cnn4}$

\n

 [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ann4*nn4}x^{nn4-1} +{bnn4*nn5}x^{nn5-1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "6.3 Differentiation - Trigonometric Functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Kevin Bohan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3363/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

More work on differentiation with trigonometric functions

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following trigonometric functions using the chain rule.

\n

Do not write out $dy/dx$; only input the differentiated right hand side of each equation.

", "advice": "

If you don't know how to differentiate trigonometric functions, please see 'Differentiation 4 - Trigonometric Functions'.

\n

\n

These questions use the chain rule.

\n

The earlier questions are easy to do by inspection, e.g using Part a:

\n

$y=sin(\\var{c[0]}x)$.

\n

We differentiate the term(s) inside the function, here the term is $\\var{c[0]}x$.

\n

Then we derive $sin$ of any function, giving us $cos$.

\n

Putting our results together, we get

\n

$\\var{c[0]}cos(\\var{c[0]}x)$.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "shuffle(2..8)[0..5]", "description": "

coefficients

", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "repeat(random(3..6),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=-5\\cos(\\var{c[3]}x)+\\sin(\\var{c[4]}x)$

\n

$\\frac{dy}{dx}=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "5{c[3]}sin({c[3]}x)+{c[4]}cos({c[4]}x)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "6.4 Differentiation - Exponentials and Logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Differentiating exponentials and Logs

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following.

\n

Do not write out $dy/dx$; only input the differentiated right hand side of each equation.

\n

Remember to enclose all single powers inside a bracket, for example, $e^{2x}$ is inputted as $e$^$(2x)$, or use $\\ln(2)$ instead of $\\ln2.$

", "advice": "

The key fact to understand here is that the differentiate of $e^x$ is $e^x$.

\n

This can be proven by looking at evaluating limits etc. but it is not necessary to do so at this stage.

\n

The basic steps to differentiate an exponential function are:

\n

Differentiate the power of $e$, for example in Part b, $y=\\var{c[1]}e^{\\var{p[1]}x}$, you would differentiate $\\var{p[1]}x$.

\n

In this example, it is $\\var{p[1]}$.

\n

Then multiply the coefficient of $e$ by this result.

\n

Here, you would find $\\simplify{{c[1]}{p[1]}e^({p[1]}x)}$.

\n

This is your final answer for the derivative.

\n

\n

Remember, don't be confused if there is no coefficient. The fact the term is there means the coefficient must be $1$, but we don't tend to write it out as, for example $1x$, we just say $x$.

\n

\n

Basic formulas:

\n

$\\frac{d}{dx} e^x = e^x$

\n

$\\frac{d}{dx} e^{u(x)} = e^{u(x)}\\frac{d}{dx} u$

\n

$\\frac{d}{dx} a^x = a^x \\ln(a)$

\n

$\\frac{d}{dx} a^{u(x)} = a^{u(x)} \\ln(a) \\frac{d}{dx} u$

\n

$\\frac{d}{dx} \\ln(x) = \\frac{1}{x} ~~ (x>0)$

\n

$\\frac{d}{dx} \\ln|x| = \\frac{1}{x} ~~ (x\\neq 0)$

\n

$\\frac{d}{dx} \\log_a(x) = \\frac{1}{x \\ln a} ~~ (a>0, a \\neq 1)$

\n

$\\frac{d}{dx} x^x = x^x (1+\\ln x)$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"p": {"name": "p", "group": "Ungrouped variables", "definition": "repeat(random(2..4),7)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "repeat(random(2..8),7)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(2..6),7)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c", "p", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=\\var{c[1]}e^{\\var{p[1]}x}$

\n

$\\frac{dy}{dx}=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({c[1]}*{p[1]})*e^({p[1]}x)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "6.5 Calculating gradients - polynomials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Calculating gradients - polynomials

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "repeat(random(2..9),17)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "repeat(random(2..9),17)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(-9..9 except [-1,0,1]),17)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "repeat(random(1..9),17)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c", "b", "a", "x"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $y=\\var{a[1]}x^2+\\var{b[1]}x+\\var{c[1]},$ first calculate the differential $y^\\prime (x) = \\frac{dy}{dx}$ and then gradient $y^\\prime (\\var{x[1]}) $ at point $x = \\var{x[1]}$

\n

$y^\\prime (x) =$ [[0]]

\n

$y^\\prime (\\var{x[1]}) =$ [[1]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{2*a[1]}x+{b[1]}", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{2*a[1]*x[1]+b[1]}", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": false, "timeout": {"action": "warn", "message": "

Time has run out.

"}, "timedwarning": {"action": "warn", "message": "

Time will run out in 5 minutes.

"}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "inreview", "showtotalmarkwhen": "inreview", "showanswerstatewhen": "inreview", "showpartfeedbackmessageswhen": "inreview", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": false, "intro": "

Instructions:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
1. Complete the questions within 90 minutes and achieve 80% or higher.
2. You can take this self-assessment as many times as you need, until you receive a satisfactory grade (you don't need to achieve 80% when you 'give it a go' the first time)
3. Use the \"Print this results summary\" and save as a pdf after you complete your attempt.  You will need the printout showing all questions for your module submission.
", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [{"message": "

Congratulations! You have achieved the minimum threshold for this module's self-assessment.

\n

Use the \"Print this results summary\" and save your attempt as a pdf.  You will need the printout showing all questions for your module submission.

", "threshold": "80"}, {"message": "

Unfortunately you have not achieved the minimum score.

\n

If this is your first 'Give it a go' attempt - don't despair! This is exactly why we take our first attempt - to see how we're going and whether we need more practice in order to complete the quest.

\n

You should still use the \"Print this results summary\" option to save a copy of your results as a pdf, which will help with your learning and can also be shared with your tutors so they can help with certain questions.

\n
If you have tried this test several times and have not been able to pass, then it is strongly advised that you attend class to go over your results with the teaching team. You can attempt the quiz while in class, and discuss your results with the tutors. Do not attempt to try to solve this quiz on your own without understanding your mistakes first. You will likely end up spending far more time than necessary on the module.
", "threshold": 0}], "reviewshowexpectedanswer": true, "showanswerstate": false, "reviewshowfeedback": true, "showactualmark": false, "showtotalmark": false, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}, {"name": "Ria Rushin Joseph", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19976/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/Picture_curve.png", "/srv/numbas/media/question-resources/Picture_curve.png"]]}