// Numbas version: finer_feedback_settings {"name": "SIT190 - Week 7 - Quiz - Short", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], []], "questions": [{"name": "Musa's copy of 3 Rate of change", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Picture_curve.png", "/srv/numbas/media/question-resources/Picture_curve.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "
Rate of change problem involving velocity & acceleration
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "\n", "rulesets": {}, "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3 .. 10#1)", "description": "", "templateType": "randrange"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(100 .. 300#5)", "description": "", "templateType": "randrange"}, "x0": {"name": "x0", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything"}, "y0": {"name": "y0", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything"}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "x0+random(4..12)", "description": "", "templateType": "anything"}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "y0+random(4..12)", "description": "", "templateType": "anything"}, "t2": {"name": "t2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "km2": {"name": "km2", "group": "Ungrouped variables", "definition": "t2*v2", "description": "", "templateType": "anything"}, "v2": {"name": "v2", "group": "Ungrouped variables", "definition": "random(55..89)", "description": "", "templateType": "anything"}, "t3": {"name": "t3", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "km3": {"name": "km3", "group": "Ungrouped variables", "definition": "t3*random(35..59)", "description": "", "templateType": "anything"}, "sec3": {"name": "sec3", "group": "Ungrouped variables", "definition": "random(10,12,15,20,30,40,45)", "description": "", "templateType": "anything"}, "sec4": {"name": "sec4", "group": "Ungrouped variables", "definition": "random(10,12,15,20,30,40,45)", "description": "", "templateType": "anything"}, "tem40": {"name": "tem40", "group": "Ungrouped variables", "definition": "random(10..38)", "description": "", "templateType": "anything"}, "tem41": {"name": "tem41", "group": "Ungrouped variables", "definition": "random(10..38)", "description": "", "templateType": "anything"}, "t4": {"name": "t4", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything"}, "aa": {"name": "aa", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "bb": {"name": "bb", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "bb2": {"name": "bb2", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "aa2": {"name": "aa2", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "x0", "y0", "x1", "y1", "t2", "km2", "v2", "t3", "km3", "sec3", "sec4", "tem40", "tem41", "t4", "aa", "bb", "bb2", "aa2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "\nCalculate the average rate of change over an interval in a graph between points $(x0,y0) = (\\var{x0},\\var{y0})$ and $(x1,y1)= (\\var{x1},\\var{y1})$
\nAverage rate = [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "({y1}-{y0})/({x1}-{x0})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "If it takes {t2} hours to drive a distance of {km2} km on a motorway, what would be your average speed in km/h?
\nAverage speed = [[0]] km/h
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{v2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 simple derivatives", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Picture_curve.png", "/srv/numbas/media/question-resources/Picture_curve.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "Simple derivatives
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3 .. 10#1)", "description": "", "templateType": "randrange"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(100 .. 300#5)", "description": "", "templateType": "randrange"}, "x0": {"name": "x0", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything"}, "y0": {"name": "y0", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything"}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "x0+random(4..12)", "description": "", "templateType": "anything"}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "y0+random(4..12)", "description": "", "templateType": "anything"}, "t2": {"name": "t2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "km2": {"name": "km2", "group": "Ungrouped variables", "definition": "t2*v2", "description": "", "templateType": "anything"}, "v2": {"name": "v2", "group": "Ungrouped variables", "definition": "random(55..89)", "description": "", "templateType": "anything"}, "t3": {"name": "t3", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "km3": {"name": "km3", "group": "Ungrouped variables", "definition": "t3*random(35..59)", "description": "", "templateType": "anything"}, "sec3": {"name": "sec3", "group": "Ungrouped variables", "definition": "random(10,12,15,20,30,40,45)", "description": "", "templateType": "anything"}, "sec4": {"name": "sec4", "group": "Ungrouped variables", "definition": "random(10,12,15,20,30,40,45)", "description": "", "templateType": "anything"}, "tem40": {"name": "tem40", "group": "Ungrouped variables", "definition": "random(10..38)", "description": "", "templateType": "anything"}, "tem41": {"name": "tem41", "group": "Ungrouped variables", "definition": "random(10..38)", "description": "", "templateType": "anything"}, "t4": {"name": "t4", "group": "Ungrouped variables", "definition": "random(3..8)", "description": "", "templateType": "anything"}, "aa": {"name": "aa", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "bb": {"name": "bb", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "bb2": {"name": "bb2", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "aa2": {"name": "aa2", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "nn": {"name": "nn", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "nn1": {"name": "nn1", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "templateType": "anything"}, "nn2": {"name": "nn2", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "templateType": "anything"}, "nn3": {"name": "nn3", "group": "Ungrouped variables", "definition": "random(2..9 except nn2)", "description": "", "templateType": "anything"}, "ann": {"name": "ann", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "ann1": {"name": "ann1", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "ann23": {"name": "ann23", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "cnn23": {"name": "cnn23", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "ann4": {"name": "ann4", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "bnn4": {"name": "bnn4", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "cnn4": {"name": "cnn4", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "nn4": {"name": "nn4", "group": "Ungrouped variables", "definition": "random(4..8)", "description": "", "templateType": "anything"}, "nn5": {"name": "nn5", "group": "Ungrouped variables", "definition": "random(2..3)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "x0", "y0", "x1", "y1", "t2", "km2", "v2", "t3", "km3", "sec3", "sec4", "tem40", "tem41", "t4", "aa", "bb", "bb2", "aa2", "nn", "nn1", "nn2", "nn3", "ann", "ann1", "ann23", "cnn23", "ann4", "bnn4", "cnn4", "nn4", "nn5"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "Find derivative of $y=\\var{ann4}x^\\var{nn4}+\\var{bnn4}x^\\var{nn5} +\\var{cnn4}$
\n[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{ann4*nn4}x^{nn4-1} +{bnn4*nn5}x^{nn5-1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 Differentiation - Trigonometric Functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Kevin Bohan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3363/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "More work on differentiation with trigonometric functions
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Differentiate the following trigonometric functions using the chain rule.
\nDo not write out $dy/dx$; only input the differentiated right hand side of each equation.
", "advice": "If you don't know how to differentiate trigonometric functions, please see 'Differentiation 4 - Trigonometric Functions'.
\n\n
These questions use the chain rule.
\nThe earlier questions are easy to do by inspection, e.g using Part a:
\n$y=sin(\\var{c[0]}x)$.
\nWe differentiate the term(s) inside the function, here the term is $\\var{c[0]}x$.
\nThen we derive $sin$ of any function, giving us $cos$.
\nPutting our results together, we get
\n$\\var{c[0]}cos(\\var{c[0]}x)$.
", "rulesets": {}, "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "shuffle(2..8)[0..5]", "description": "coefficients
", "templateType": "anything"}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "repeat(random(3..6),2)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$y=-5\\cos(\\var{c[3]}x)+\\sin(\\var{c[4]}x)$
\n$\\frac{dy}{dx}=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "5{c[3]}sin({c[3]}x)+{c[4]}cos({c[4]}x)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 Differentiation - Exponentials and Logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "Differentiating exponentials and Logs
Differentiate the following.
\nDo not write out $dy/dx$; only input the differentiated right hand side of each equation.
\nRemember to enclose all single powers inside a bracket, for example, $e^{2x}$ is inputted as $e$^$(2x)$, or use $\\ln(2)$ instead of $\\ln2.$
", "advice": "The key fact to understand here is that the differentiate of $e^x$ is $e^x$.
\nThis can be proven by looking at evaluating limits etc. but it is not necessary to do so at this stage.
\nThe basic steps to differentiate an exponential function are:
\nDifferentiate the power of $e$, for example in Part b, $y=\\var{c[1]}e^{\\var{p[1]}x}$, you would differentiate $\\var{p[1]}x$.
\nIn this example, it is $\\var{p[1]}$.
\nThen multiply the coefficient of $e$ by this result.
\nHere, you would find $\\simplify{{c[1]}{p[1]}e^({p[1]}x)}$.
\nThis is your final answer for the derivative.
\n\nRemember, don't be confused if there is no coefficient. The fact the term is there means the coefficient must be $1$, but we don't tend to write it out as, for example $1x$, we just say $x$.
\n\nBasic formulas:
\n$\\frac{d}{dx} e^x = e^x$
\n$\\frac{d}{dx} e^{u(x)} = e^{u(x)}\\frac{d}{dx} u$
\n$\\frac{d}{dx} a^x = a^x \\ln(a)$
\n$\\frac{d}{dx} a^{u(x)} = a^{u(x)} \\ln(a) \\frac{d}{dx} u$
\n$\\frac{d}{dx} \\ln(x) = \\frac{1}{x} ~~ (x>0)$
\n$\\frac{d}{dx} \\ln|x| = \\frac{1}{x} ~~ (x\\neq 0)$
\n$\\frac{d}{dx} \\log_a(x) = \\frac{1}{x \\ln a} ~~ (a>0, a \\neq 1)$
\n$\\frac{d}{dx} x^x = x^x (1+\\ln x)$
", "rulesets": {}, "variables": {"p": {"name": "p", "group": "Ungrouped variables", "definition": "repeat(random(2..4),7)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "repeat(random(2..8),7)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(2..6),7)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c", "p", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$y=\\var{c[1]}e^{\\var{p[1]}x}$
\n$\\frac{dy}{dx}=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "({c[1]}*{p[1]})*e^({p[1]}x)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 Calculating gradients - polynomials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "Calculating gradients - polynomials
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "repeat(random(2..9),17)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "repeat(random(2..9),17)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(-9..9 except [-1,0,1]),17)", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "repeat(random(1..9),17)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c", "b", "a", "x"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "Given $y=\\var{a[1]}x^2+\\var{b[1]}x+\\var{c[1]},$ first calculate the differential $y^\\prime (x) = \\frac{dy}{dx}$ and then gradient $y^\\prime (\\var{x[1]}) $ at point $x = \\var{x[1]}$
\n$y^\\prime (x) =$ [[0]]
\n$y^\\prime (\\var{x[1]}) =$ [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{2*a[1]}x+{b[1]}", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{2*a[1]*x[1]+b[1]}", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": []}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 Number of roots and stationary points of a graph", "extensions": ["geogebra", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Nick Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2416/"}, {"name": "Thomas Waters", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3649/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "A graph (of a cubic) is given. The question is to determine the number of roots and number of stationary points the graph has. Non-calculator. Advice is given.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Finding the number of roots and turning points based on a graph.
", "advice": "(i) Definition: A 'root' of a function $f(x)$ is a value of $x$ which makes $f(x)=0$. Visually a root can be found be seeing when the $y$-coordinate of the graph is $0$, i.e., when the graph crosses the $x$-axis. Therefore, to count the roots, you need to count how many times the graph crosses the $x$-axis. In this question, the graph crosses the $x$-axis $\\var{num_roots}$ time(s), so there are $\\var{num_roots}$ roots.
\n(ii) Definition: A 'stationary point' of a function is a point on the graph where $f'(x)=0$. Remember that $f'$ tells us the gradient of $f$, so visually a stationary point is where the gradient of the curve is 0. In this question, there is/are $\\var{num_stat}$ place(s) where the gradient of the graph is $0$, so the answer is $\\var{num_stat}$.
\n(iii) There are 3 types of stationary points: maximum points, minimum points and points of inflection.
\nConsider what happens to the gradient at a maximum point. It is positive just before the maximum point, zero at the maximum point, then negative just after the maximum point.
\nJust before a minimum point the gradient is negative, at the minimum the gradient is zero and just after the minimum point it is positive.
\n", "rulesets": {}, "variables": {"num_roots": {"name": "num_roots", "group": "Ungrouped variables", "definition": "if(num_stat = 2, random(1..3), 1)", "description": "The number of roots.
", "templateType": "anything"}, "vshift": {"name": "vshift", "group": "Ungrouped variables", "definition": "random(-2..2)", "description": "Random amount of vertifical shift for sake of variability.
", "templateType": "anything"}, "num_stat": {"name": "num_stat", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "Number of stationary points
", "templateType": "anything"}, "hshift": {"name": "hshift", "group": "Ungrouped variables", "definition": "random(-2..2)", "description": "Random amount of horizontal shift to create variability.
", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-1..1 except 0)", "description": "Coefficient of x^3
", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["num_roots", "num_stat", "a", "hshift", "vshift"], "variable_groups": [], "functions": {"plotgraph": {"parameters": [["num_stat", "number"], ["num_roots", "number"], ["a", "number"], ["h", "number"], ["v", "number"]], "type": "html", "language": "javascript", "definition": "// This functions plots a cubic with a certain number of\n// stationary points and roots.\n// It creates the board, sets it up, then returns an\n// HTML div tag containing the board.\n\n\n// Max and min x and y values for the axis.\nvar x_min = -6;\nvar x_max = 6;\nvar y_min = -10;\nvar y_max = 10;\n\n\n// First, make the JSXGraph board.\nvar div = Numbas.extensions.jsxgraph.makeBoard(\n '500px',\n '600px',\n {\n boundingBox: [x_min,y_max,x_max,y_min],\n axis: false,\n showNavigation: true,\n grid: true\n }\n);\n\n\n\n\n// div.board is the object created by JSXGraph, which you use to \n// manipulate elements\nvar board = div.board; \n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,1],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,1],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n\n\n\n\n// Plot the function.\n\nswitch (num_stat) {\n case 0:\n board.create('functiongraph',\n [function(x){ return a*(Math.pow(x+h,3)+2*(x+h)+v);},x_min,x_max]);\n break;\n \n case 1:\n board.create('functiongraph',\n [function(x){ return a*(Math.pow(x+h,3)+v);},x_min,x_max]);\n break;\n \n case 2:\n switch (num_roots) {\n case 1:\n board.create('functiongraph',\n [function(x){ return a*((x+2+h)*(x+h)*(x-2+h)+5);},x_min,x_max]);\n break;\n \n case 2:\n board.create('functiongraph',\n [function(x){ return a*((x+1+h)*(x+1+h)*(x-2+h));},x_min,x_max]);\n break;\n break;\n \n case 3:\n board.create('functiongraph',\n [function(x){ return a*((x+2+h)*(x+h)*(x-2+h));},x_min,x_max]);\n break;\n }\n \n \n break;\n}\n\n\n// num_stat\n\n\n\n\n\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "{plotgraph(num_stat,num_roots, a, hshift, vshift)}
\nAbove is the graph of some function $f$.
\nHow many roots does $~~f(x)=0~~$ have? [[0]]
\nHow many stationary points does $f(x)$ have? [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "num_roots", "maxValue": "num_roots", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "num_stat", "maxValue": "num_stat", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 Find coordinates of stationary points of polynomials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "Finding the coordinates and determining the nature of the stationary points on a polynomial function
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"y12": {"name": "y12", "group": "Ungrouped variables", "definition": "2(x12^3)-3(x12+x22)*x12^2+6*x12*x22*x12+c02", "description": "", "templateType": "anything"}, "y03": {"name": "y03", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything"}, "y32": {"name": "y32", "group": "Ungrouped variables", "definition": "if(y12\\[ \\simplify{y = 2x^3-3{(x12+x22)}x^2+6{x12*x22}x+{c02}} \\]
\nDetermine the coordinates and the nature of the stationary points.
\nFirst Derivative; $y^{\\prime}(x) =$ [[4]]
\nGive values of x where stationary points occur: smallest-$x_1$ =[[6]], largest-$x_2$ = [[7]]
\nSecond Derivative is $~ y^{\\prime\\prime}(x) =$ [[5]]
\nValues of Second derivative at stationary points:
\n$y^{\\prime\\prime}(x_1) = $[[8]]
\n$y^{\\prime\\prime}(x_2) = $[[9]]
\n\nMinimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$
\nEnter fractions in their simplest form.
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{x32}", "answerSimplification": "all,fractionNumbers", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{y32}", "answerSimplification": "all,fractionNumbers", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{x42}", "answerSimplification": "all,fractionNumbers", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{y42}", "answerSimplification": "all,fractionNumbers", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "6x^2-{6(x12+x22)}x+{6(x12*x22)}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "12x-{6(x12+x22)}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "{x111}", "maxValue": "{x111}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "{x222}", "maxValue": "{x222}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{12{x111}-6(x12+x22)}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{12{x222}-6(x12+x22)}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Ria Rushin Joseph", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19976/"}], "extensions": ["geogebra", "jsxgraph"], "custom_part_types": [], "resources": [["question-resources/Picture_curve.png", "/srv/numbas/media/question-resources/Picture_curve.png"]]}