// Numbas version: finer_feedback_settings {"name": "SIT190 - Module 7 - Self-assessment", "metadata": {"description": "", "licence": "None specified"}, "duration": 5400, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], []], "questions": [{"name": "7.1 Chain rule - binomial,", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Differentiate $\\displaystyle (ax^m+b)^{n}$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "advice": "\n \n \n

$\\simplify[std]{f(x) = ({a} * x^{m}+{b})^{n}}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{{a} * x^{m}+{b}}$ and we have $f(u)=\\simplify[std]{u^{n}}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{m*a}x ^ {m -1}}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{{n}u^{n-1}} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{m*a}x ^ {m-1} * ({n}*u^{n-1})}\\\\\n \n &=&\\simplify[std]{{m*a*n}x^{m-1}u^{n-1}}\\\\\n \n &=& \\simplify[std]{{m*a*n}x^{m-1}({a}*x^{m}+{b})^{n-1}}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x^{m}+{b}}$.

\n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(5..9)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\simplify[std]{f(x) = ({a} * x^{m}+{b})^{n}}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n \n \n

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n "}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 3, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*m*n}x ^ {m-1} * ({a} * x^{m}+{b})^{n-1}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "7.2 Chain rule - exponential of polynomial,", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Differentiate $\\displaystyle e^{ax^{m} +bx^2+c}$

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "advice": "\n\t \n\t \n\t

$\\simplify[std]{f(x) = e^({a}x^{m} +{b}x^2+{c})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n\t \n\t \n\t \n\t

For this example, we let $u=\\simplify[std]{{a}x^{m} +{b}x^2+{c}}$ and we have $f(u)=\\simplify[std]{e^u}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{a*m}x^{m-1} +{2*b}x}\\\\\n\t \n\t \\frac{df(u)}{du} &=& \\simplify[std]{e^u} \\end{eqnarray*}\\]

\n\t \n\t \n\t \n\t

Hence on substituting into the chain rule above we get:

\n\t \n\t \n\t \n\t

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({a*m}x^{m-1} +{2*b}x) * (e^u)}\\\\\n\t \n\t &=& \\simplify[std]{({a*m}x^{m-1} +{2*b}x)*e^({a}x^{m} +{b}x^2+{c})}\n\t \n\t \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x^{m} +{b}x^2+{c}}$.

\n\t \n\t \n\t", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(3..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "s2", "s1", "m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n\t\t\t

\\[\\simplify[std]{f(x) = e^({a}x^{m} +{b}x^2+{c})}\\]

\n\t\t\t

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n\t\t\t

Click on Show steps for more information. You will not lose any marks by doing so.

\n\t\t\t", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n\t\t\t\t\t \n\t\t\t\t\t \n\t\t\t\t\t

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n\t\t\t\t\t \n\t\t\t\t\t \n\t\t\t\t\t"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 3, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({m*a}x^{m-1}+{2*b}x)*e^({a}x^{m} +{b}x^2+{c})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "7.3 Chain rule - log of binomial", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Differentiate $\\displaystyle \\ln((ax+b)^{m})$

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "advice": "

$\\simplify[std]{f(x) = ln({a}x+{b}x^{m})}$

\n

The chain rule applies to $f(x)=g(h(x))$ where

\n

\\[ g(h) = \\ln(h) {\\rm~and~} \\simplify[std]{h(x) = {a}x+{b}x^{m}}.\\]

\n

Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{dh}{dx} \\cdot \\frac{dg}{dh}\\]

\n

Calculate the derivative of $h(x)$ and $g(h)$: \\[\\frac{dh}{dx} = \\simplify[std]{{a}+{b*m}x^{m-1}}\\]

\n

\\[\\frac{dg}{dh} = \\frac{1}{h}\\]

\n

Hence on substituting $h = h(x) = \\simplify[std]{{a}x+{b}x^{m}}$ we finally have

\n

\\[\\frac{df}{dx} = \\simplify[std]{({a}x+{b*m}x^{m-1})/({a}x+{b}x^{m})}    \\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "s2", "s1", "m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\simplify[std]{f(x) = ln({a}x+{b}x^{m})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 3, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a}+{b*m}x^{m-1})/({a}x+{b}x^{m})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [5, 6], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "7.4 Differentiate product of sin/cos/ln/e function and quadratic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following function $f(x)$ using the product rule.  Be sure to use brackets where required, e.g. \"e^(2x)\", \"sin(2x)\", \"ln(2x)\".

", "advice": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n

For this example we can set

\n

\\[ u = \\var{quadratic}, \\quad v = \\var{other} \\]

\n

Differentiating these gives

\n

\\[ \\simplify[std]{Diff(u,x,1)} = \\var{quad_deriv}, \\quad \\simplify[std]{Diff(v,x,1)} = \\var{other_deriv} \\]

\n

And so combining into our rule then leads to 

\n

\\[ \\simplify[std]{ u * Diff(v,x,1) + v * Diff(u,x,1)} = \\var{prod_deriv} \\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "type": {"name": "type", "group": "Ungrouped variables", "definition": "random(\"sin\",\"cos\")", "description": "", "templateType": "anything", "can_override": false}, "derivative": {"name": "derivative", "group": "Ungrouped variables", "definition": "if(type = \"sin\",\n expression(\"{m*b}({a} + {b} * x) ^ {m-1} * sin({n} * x)+{n}*({a} + {b} * x) ^ {m} * cos({n} * x)\"),\n expression(\"{m*b}({a} + {b} * x) ^ {m-1} * cos({n} * x)-{n}*({a} + {b} * x) ^ {m} * sin({n} * x)\")\n)", "description": "", "templateType": "anything", "can_override": false}, "question": {"name": "question", "group": "Ungrouped variables", "definition": "if(type = \"sin\",\n expression(\"sin({n} * x)\"),expression(\"cos({n} * x)\"))", "description": "", "templateType": "anything", "can_override": false}, "autoderiv": {"name": "autoderiv", "group": "Ungrouped variables", "definition": "diff(derivative,\"x\",1)", "description": "", "templateType": "anything", "can_override": false}, "quadratic": {"name": "quadratic", "group": "Ungrouped variables", "definition": "simplify(expression(\"{random(-4..4 except -1..1)}x^2 + {random(-4..4 except 0..1)}x + {random(-5..5)}\"),[\"basic\"])", "description": "", "templateType": "anything", "can_override": false}, "other": {"name": "other", "group": "Ungrouped variables", "definition": "expression(random([\n \"sin({random(2..6)}x)\",\n \"cos({random(2..6)}x)\",\n \"ln({random(2..6)}x)\",\n \"e^({random(2..6)}x)\"]))", "description": "", "templateType": "anything", "can_override": false}, "prod": {"name": "prod", "group": "Ungrouped variables", "definition": "expression(\"{quadratic}*{other}\")", "description": "", "templateType": "anything", "can_override": false}, "prod_deriv": {"name": "prod_deriv", "group": "Ungrouped variables", "definition": "diff(prod,\"x\",1)", "description": "", "templateType": "anything", "can_override": false}, "quad_deriv": {"name": "quad_deriv", "group": "Ungrouped variables", "definition": "diff(quadratic,\"x\",1)", "description": "", "templateType": "anything", "can_override": false}, "other_deriv": {"name": "other_deriv", "group": "Ungrouped variables", "definition": "diff(other,\"x\",1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "s1", "b", "m", "n", "type", "derivative", "question", "autoderiv", "quadratic", "other", "prod", "prod_deriv", "quad_deriv", "other_deriv"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[std]{f(x) = {prod}}$

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 3, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{prod_deriv}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "7.5 Differentiate quotient of sin/cos/ln/e function and quadratic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following function $f(x)$ using the quotient rule.  Be sure to use brackets where required, e.g. \"e^(2x)\", \"sin(2x)\", \"ln(2x)\".

", "advice": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u / v,x,1)} = \\frac{\\simplify[std]{v * Diff(u,x,1)} -\\simplify[std]{ u * Diff(v,x,1) } }{v^2}\\]

\n

For this example we can set

\n

\\[ u = \\var{quadratic}, \\quad v = \\var{other} \\]

\n

\\[ u = \\var{other}, \\quad v = \\var{quadratic} \\]

\n

Differentiating these gives

\n

\\[ \\simplify[std]{Diff(u,x,1)} = \\var{quad_deriv}, \\quad \\simplify[std]{Diff(v,x,1)} = \\var{other_deriv} \\]

\n

\\[ \\simplify[std]{Diff(u,x,1)} = \\var{other_deriv}, \\quad \\simplify[std]{Diff(v,x,1)} = \\var{quad_deriv} \\]

\n

And so combining into our rule then leads to 

\n

\\[ \\frac{\\simplify[std]{ v * Diff(u,x,1) - u * Diff(v,x,1)}}{v^2}   = \\var{quotient_deriv} \\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "type": {"name": "type", "group": "Ungrouped variables", "definition": "random(0..1)", "description": "", "templateType": "anything", "can_override": false}, "derivative": {"name": "derivative", "group": "Ungrouped variables", "definition": "if(type = \"sin\",\n expression(\"{m*b}({a} + {b} * x) ^ {m-1} * sin({n} * x)+{n}*({a} + {b} * x) ^ {m} * cos({n} * x)\"),\n expression(\"{m*b}({a} + {b} * x) ^ {m-1} * cos({n} * x)-{n}*({a} + {b} * x) ^ {m} * sin({n} * x)\")\n)", "description": "", "templateType": "anything", "can_override": false}, "autoderiv": {"name": "autoderiv", "group": "Ungrouped variables", "definition": "diff(derivative,\"x\",1)", "description": "", "templateType": "anything", "can_override": false}, "quadratic": {"name": "quadratic", "group": "Ungrouped variables", "definition": "simplify(expression(\"{random(-4..4 except -1..1)}x^2 + {random(-4..4 except 0..1)}x + {random(-5..5)}\"),[\"basic\"])", "description": "", "templateType": "anything", "can_override": false}, "other": {"name": "other", "group": "Ungrouped variables", "definition": "expression(random([\n \"sin({random(2..6)}x)\",\n \"cos({random(2..6)}x)\",\n \"ln({random(2..6)}x)\",\n \"e^({random(2..6)}x)\"]))", "description": "", "templateType": "anything", "can_override": false}, "quotient": {"name": "quotient", "group": "Ungrouped variables", "definition": "if(type=1,\n expression(\"{quadratic}/{other}\"),\n expression(\"{other}/{quadratic}\")\n )", "description": "", "templateType": "anything", "can_override": false}, "quotient_deriv": {"name": "quotient_deriv", "group": "Ungrouped variables", "definition": "diff(quotient,\"x\",1)", "description": "", "templateType": "anything", "can_override": false}, "quad_deriv": {"name": "quad_deriv", "group": "Ungrouped variables", "definition": "diff(quadratic,\"x\",1)", "description": "", "templateType": "anything", "can_override": false}, "other_deriv": {"name": "other_deriv", "group": "Ungrouped variables", "definition": "diff(other,\"x\",1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "s1", "b", "m", "n", "type", "derivative", "autoderiv", "quadratic", "other", "quotient", "quotient_deriv", "quad_deriv", "other_deriv"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[std]{f(x) = {quotient}}$

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u / v,x,1)} = \\frac{\\simplify[std]{v * Diff(u,x,1)} -\\simplify[std]{ u * Diff(v,x,1) } }{v^2}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 3, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{quotient_deriv}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "7.6 Find coordinates of stationary points of polynomials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Finding the coordinates and determining the nature of the stationary points on a polynomial function

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"y12": {"name": "y12", "group": "Ungrouped variables", "definition": "2(x12^3)-3(x12+x22)*x12^2+6*x12*x22*x12+c02", "description": "", "templateType": "anything", "can_override": false}, "y03": {"name": "y03", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything", "can_override": false}, "y32": {"name": "y32", "group": "Ungrouped variables", "definition": "if(y12For the following function:

\n

\\[ \\simplify[all,!noLeadingMinus,canonicalOrder]{y = {pm}*(2x^3-3{(x12+x22)}x^2+6{x12*x22}x+{c02})} \\]

\n

 

\n

Determine the coordinates and the nature of the stationary points using the following steps.

\n

 

\n

First Derivative

\n

$y^{\\prime}(x) =$ [[0]]

\n

 

\n

Give the values of x where stationary points occur:

\n

smallest-$x_1$ =[[1]]   

\n

largest-$x_2$ = [[2]]

\n

 

\n

Use the sign test to classify these as a local maximum, local minimum, or point of inflection.

\n

Below $x_1$: [[3]]

\n

Between $x_1$ and $x_2$: [[4]]

\n

Above $x_2$: [[5]]

\n

 

\n

Therefore, $x_1$ is a [[6]] and $x_2$ is a [[7]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{pm}*(6x^2-{6(x12+x22)}x+{6(x12*x22)})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x111}", "maxValue": "{x111}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x222}", "maxValue": "{x222}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["increasing", "decreasing"], "matrix": ["if(pm=1,1,0)", "if(pm=-1,1,0)"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["increasing", "decreasing"], "matrix": ["if(pm = 1,0,1)", "if(pm=1,1,0)"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["increasing", "decreasing"], "matrix": ["if(pm=1,1,0)", "if(pm=1,0,1)"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["local min", "local max", "point of inflexion"], "matrix": ["if(pm = 1,0,1)", "if(pm = 1,1,0)", 0], "distractors": ["", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["local min", "local max", "point of inflexion"], "matrix": ["if(pm=1,1,0)", "if(pm=1,0,1)", 0], "distractors": ["", "", ""]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": false, "timeout": {"action": "warn", "message": "

Time has run out.

"}, "timedwarning": {"action": "warn", "message": "

You have 5 minutes before time runs out.

"}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "inreview", "showtotalmarkwhen": "inreview", "showanswerstatewhen": "inreview", "showpartfeedbackmessageswhen": "inreview", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": false, "intro": "

Instructions:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
1. Complete the questions within 90 minutes and achieve 80% or higher.
2. You can take this self-assessment as many times as you need, until you receive a satisfactory grade (you don't need to achieve 80% when you 'give it a go' the first time)
3. Use the \"Print this results summary\" and save as a pdf after you complete your attempt.  You will need the printout showing all questions for your module submission.
", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [{"message": "

Congratulations! You have achieved the minimum threshold for this module's self-assessment.

\n

Use the \"Print this results summary\" and save your attempt as a pdf.  You will need the printout showing all questions for your module submission.

", "threshold": "80"}, {"message": "

Unfortunately you have not achieved the minimum score.

\n

If this is your first 'Give it a go' attempt - don't despair! This is exactly why we take our first attempt - to see how we're going and whether we need more practice in order to complete the quest.

\n

You should still use the \"Print this results summary\" option to save a copy of your results as a pdf, which will help with your learning and can also be shared with your tutors so they can help with certain questions.

\n
If you have tried this test several times and have not been able to pass, then it is strongly advised that you attend class to go over your results with the teaching team. You can attempt the quiz while in class, and discuss your results with the tutors. Do not attempt to try to solve this quiz on your own without understanding your mistakes first. You will likely end up spending far more time than necessary on the module.
", "threshold": 0}], "reviewshowexpectedanswer": true, "showanswerstate": false, "reviewshowfeedback": true, "showactualmark": false, "showtotalmark": false, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Julien Ugon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3575/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "extensions": [], "custom_part_types": [], "resources": []}