// Numbas version: finer_feedback_settings {"name": "SIT190 - Module 8 - Self-assessment", "metadata": {"description": "", "licence": "None specified"}, "duration": 5400, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", ""], "variable_overrides": [[], [], [], []], "questions": [{"name": "8.1 Integration: Indefinite integral", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Find $\\displaystyle \\int ae ^ {bx}+ c\\sin(dx) + px ^ {q} + k/x \\;dx$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "\n\t

Integrate the following function $f(x)$.

\n\t

 
Input the constant of integration as $C$.

\n\t", "advice": "\n\t

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]

\n\t

Splitting the integral into three parts and using the above information we have:
\\[\\begin{eqnarray*}\\simplify[std]{Int({b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3},x)}&=&\\simplify[std]{Int({b} * e ^ ({a}*x),x)+Int({b1} * Sin({a1}*x),x)+Int({a2} * x ^ {c3},x) }\\\\ &=&\\simplify[std]{({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C} \\end{eqnarray*}\\]

\n\t", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "s5*random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "s4*random(3..9)", "description": "", "templateType": "anything", "can_override": false}, "s5": {"name": "s5", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s2*random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "s3": {"name": "s3", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "s3*random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "s1*random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "s4": {"name": "s4", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "a5": {"name": "a5", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "an5": {"name": "an5", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything", "can_override": false}, "b5": {"name": "b5", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "bn5": {"name": "bn5", "group": "Ungrouped variables", "definition": "random(-3,-2,2,3)", "description": "", "templateType": "anything", "can_override": false}, "c5": {"name": "c5", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "c6": {"name": "c6", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "b6": {"name": "b6", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "a6": {"name": "a6", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "b7": {"name": "b7", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "b8": {"name": "b8", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "a7": {"name": "a7", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "a8": {"name": "a8", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "a9": {"name": "a9", "group": "Ungrouped variables", "definition": "random(-5..5 except [0])", "description": "", "templateType": "anything", "can_override": false}, "b9": {"name": "b9", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "s3", "s2", "s1", "s5", "s4", "a1", "a2", "b1", "c3", "a5", "an5", "b5", "bn5", "c5", "c6", "b6", "a6", "b7", "b8", "a7", "a8", "a9", "b9"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[std]{f(x) = {a5}* x^{an5}+ {b5}*x^{bn5}+ {c5}}$

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a5}/{an5+1})*(x^{(an5 + 1)})+({b5}/{bn5+1})*(x^{(bn5 + 1)})+{c5}*x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[std]{f(x) = {b6} * e ^ ({a6}*x) + {c6}}$

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({b6}/{a6}) * (e ^({a6}*x))+{c6}*x +C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[std]{f(x) =  {b7} * Sin({a7}*x) + {b8} * Cos({a8}*x) }$

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;\\cos(ax)\\;dx &=& \\frac{1}{a}\\sin(ax)+C\\\\ \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(({(-b7)}/{a7}) * Cos({a7}*x)) + (({(b8)}/{a8}) * Sin({a8}*x))+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[std]{f(x) = ({a9} /x) +  ({b9} /(x^2)) }$  (use abs(x) for |x|)

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;\\frac{1}{x}\\;dx&=&\\ln(|x|)+C, \\,\\, {\\rm and} \\,\\, \\frac{1}{x^2}&=x^{-2}& \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a9}Ln(abs(x))+{-b9}/x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "8.2 Integration: solving for constant", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Recovering\noriginal function given some information such as derivative and value at some point.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Find the orginal function $f(x)$ given $f^\\prime (x)$ and value $f(x_0) = C_0;$ that is solve for constant for  $\\int f^\\prime (x) \\,dx.$

", "advice": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]

\n

\n

First integrate:

\n

(*)  $\\int f^\\prime (x)\\,dx$ = $\\int\\;(a x^n+ c)\\,dx=\\; \\frac{a}{n+1}x^{n+1} + cx +C$

\n

then calculate the value of $C$ from

\n

$\\frac{a}{n+1}x_0^{n+1} + cx_0 +C = C_0$

\n

and put in back to (*).

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a5": {"name": "a5", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "an5": {"name": "an5", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything", "can_override": false}, "c5": {"name": "c5", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "x0": {"name": "x0", "group": "Ungrouped variables", "definition": "random(-1,0,1,2)", "description": "", "templateType": "anything", "can_override": false}, "C0": {"name": "C0", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "a52": {"name": "a52", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "an52": {"name": "an52", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything", "can_override": false}, "c52": {"name": "c52", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "x02": {"name": "x02", "group": "Ungrouped variables", "definition": "random(-1,0,1,2)", "description": "", "templateType": "anything", "can_override": false}, "C02": {"name": "C02", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "an": {"name": "an", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "xp0": {"name": "xp0", "group": "Ungrouped variables", "definition": "random(1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "Cp0": {"name": "Cp0", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "xp02": {"name": "xp02", "group": "Ungrouped variables", "definition": "random(1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "Cp02": {"name": "Cp02", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "an2": {"name": "an2", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a5", "an5", "c5", "x0", "C0", "a52", "an52", "c52", "x02", "C02", "a", "an", "c", "xp0", "Cp0", "xp02", "Cp02", "c2", "an2", "a2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f^\\prime (x) = \\simplify[std]{ {a5}* x^{an5}+ {c5}}, ~~~ f(\\var{x0}) = \\var{C0}$

\n

$\\displaystyle \\int\\;(\\simplify[std]{ {a5}* x^{an5}+ {c5}})\\,dx=\\;$[[0]]

\n

$f (x)=\\;$[[1]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a5}/{an5+1})*(x^{(an5+1)})+{c5}*x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a5}/{an5+1})*(x^{(an5+1)})+{c5}*x+({C0}-({a5}/{an5+1})*({x0}^{(an5+1)})-{c5*x0})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f^\\prime (x) = \\simplify[std]{ {a} sin({an}x) + {c}}, ~~~ f(\\var{xp0*pi}) = \\var{Cp0}$

\n

$\\displaystyle \\int\\;(\\simplify[std]{ {a} sin({an}x)+ {c}})\\,dx=\\;$[[0]]

\n

$f(x)=\\;$[[1]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Put 'pi' for $\\pi$ and do not use decimals.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{-a/an}*cos({an}x)+ {c}x + C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{-a/an}*cos({an}x)+{c}x + {Cp0} -{-a/an}*cos({an*xp0}pi)- {c*xp0}pi", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "8.3 Definite Integrals - 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Definite Integrals

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Evaluate the following definite integrals, giving your answer as a fraction as necessary.

", "advice": "

To evaluate a definite integral we must first integrate the function (we do not need to include c, the constant of integration) and then substitute in the given limits.

\n

\n

(a)

\n

$\\int_\\var{a}^\\var{b}(1 + \\var{c}x)\\mathrm{dx} = \\left[x + \\var{c/2}x^2\\right]_\\var{a}^\\var{b}= [(\\var{b})+ \\var{c/2}(\\var{b})^2]-[(\\var{a}) + \\var{c/2}(\\var{a})^2]=\\simplify{{b}+ {c/2}{b}^2-{a} - {c/2}{a}^2}$

\n

\n

(b)

\n

$\\int_\\var{d}^\\var{f} (x^2 + \\var{g}x-\\var{h})\\mathrm{dx}= \\left[\\frac{x^3}{3} + \\var{g/2}x^2-\\var{h}x\\right]_\\var{d}^\\var{f}=[\\frac{(\\var{f})^3}{3} + \\var{g/2}(\\var{f})^2-\\var{h}(\\var{f})]-[\\frac{(\\var{d})^3}{3} + \\var{g/2}(\\var{d})^2-\\var{h}(\\var{d})]=\\var{f^3/3 + g/2*f^2-h*f-(d^3/3 + g/2*d^2-h*d)}$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Ungrouped variables", "definition": "random(-4..0)", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-4..0)", "description": "", "templateType": "anything", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-4..0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "h", "k", "j", "l"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\int_\\var{a}^\\var{b}(1 + \\var{c}x)\\mathrm{dx}$

", "minValue": "{b}+{c}{b}^2/2-{a}-{a}^2{c}/2", "maxValue": "{b}+{c}{b}^2/2-{a}-{a}^2{c}/2", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\int_\\var{d}^\\var{f} (x^2 + \\var{g}x-\\var{h})\\mathrm{dx}$

", "minValue": "{f}^3/3+{g}{f}^2/2-{h}{f}-{d}^3/3-{g}{d}^2/2+{h}{d}", "maxValue": "{f}^3/3+{g}{f}^2/2-{h}{f}-{d}^3/3-{g}{d}^2/2+{h}{d}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "8.5 Definite integrals - 4", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "J. Richard Snape", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1700/"}, {"name": "Anna Strzelecka", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2945/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "

Two quadratic graphs are sketched with some area beneath them shaded. Question is to determine the area of shaded regions using integration. The first graph's area is all above the $x$-axis. The second graph has some area above and some below the $x$-axis.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x11": {"name": "x11", "group": "linear graph (not used)", "definition": "random(1..2)", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "c quadratic. neg region", "definition": "a3+random(3..4)", "description": "", "templateType": "anything", "can_override": false}, "x12": {"name": "x12", "group": "linear graph (not used)", "definition": "random(1..4) + x11", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "b) quadratic. no neg region", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "b) quadratic. no neg region", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "linear graph (not used)", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "x33": {"name": "x33", "group": "c quadratic. neg region", "definition": "x32+2", "description": "", "templateType": "anything", "can_override": false}, "area2": {"name": "area2", "group": "b) quadratic. no neg region", "definition": "(a2*x22^3/3+c2*x22)-(a2*x21^3/3+c2*x21)", "description": "", "templateType": "anything", "can_override": false}, "x42": {"name": "x42", "group": "Ungrouped variables", "definition": "b4", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "linear graph (not used)", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "b4": {"name": "b4", "group": "Ungrouped variables", "definition": "a4+random(2..3)", "description": "", "templateType": "anything", "can_override": false}, "c4": {"name": "c4", "group": "Ungrouped variables", "definition": "b4+2", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "c quadratic. neg region", "definition": "random(-3..-1)", "description": "", "templateType": "anything", "can_override": false}, "x31": {"name": "x31", "group": "c quadratic. neg region", "definition": "b3-random(2..3)", "description": "", "templateType": "anything", "can_override": false}, "area3": {"name": "area3", "group": "c quadratic. neg region", "definition": "(x33^3/3 - 0.5*(a3+b3)*x33^2+a3*b3*x33)-2*(x32^3/3 - 0.5*(a3+b3)*x32^2+a3*b3*x32)+(x31^3/3 - 0.5*(a3+b3)*x31^2+a3*b3*x31)", "description": "", "templateType": "anything", "can_override": false}, "x32": {"name": "x32", "group": "c quadratic. neg region", "definition": "b3", "description": "", "templateType": "anything", "can_override": false}, "x41": {"name": "x41", "group": "Ungrouped variables", "definition": "a4", "description": "", "templateType": "anything", "can_override": false}, "x22": {"name": "x22", "group": "b) quadratic. no neg region", "definition": "random(3..5)+x21", "description": "", "templateType": "anything", "can_override": false}, "x21": {"name": "x21", "group": "b) quadratic. no neg region", "definition": "random(-4..-2)", "description": "", "templateType": "anything", "can_override": false}, "a4": {"name": "a4", "group": "Ungrouped variables", "definition": "random(-3..-2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a4", "b4", "c4", "x41", "x42"], "variable_groups": [{"name": "linear graph (not used)", "variables": ["x11", "x12", "a1", "b1"]}, {"name": "b) quadratic. no neg region", "variables": ["x21", "x22", "a2", "c2", "area2"]}, {"name": "c quadratic. neg region", "variables": ["a3", "b3", "x31", "x32", "x33", "area3"]}], "functions": {"plotgraph1": {"parameters": [["q", "number"], ["x1", "number"], ["x2", "number"], ["ymin", "number"], ["ymax", "number"], ["a", "number"], ["b", "number"], ["c", "number"]], "type": "html", "language": "javascript", "definition": "// Shading under a graph! This functions plots a graph of y = a(x-r1)(x-r2)\n// It creates the board, sets it up, then returns an\n// HTML div tag containing the board.\n\n\n// Max and min x and y values for the axis.\nvar xmin = -7;\nvar xmax = 7;\n\n// First, make the JSXGraph board.\nvar div = Numbas.extensions.jsxgraph.makeBoard(\n '500px',\n '500px',\n {\n boundingBox: [xmin,ymax,xmax,ymin],\n axis: false,\n showNavigation: false,\n grid: true\n }\n);\n\n\n\n// div.board is the object created by JSXGraph, which you use to \n// manipulate elements\nvar brd = div.board; \n\n// create the x-axis.\nvar xaxis = brd.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = brd.create('ticks',[xaxis,1],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = brd.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nyticks = brd.create('ticks',[yaxis,5],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 4\n});\n\n\n\n// This function shades in the area below the graph of f\n// between the x values x1 and x2\n\nvar shade = function(f,x1,x2,colour) {\n var dataX1 = [x1,x1];\n var dataY1 = [0,f(x1)];\n\n var dataX2 = [];\n var dataY2 = [];\n for (var i = x1; i <= x2; i = i+0.1) {\n dataX2.push(i);\n dataY2.push(f(i));\n }\n\n var dataX3 = [x2,x2];\n var dataY3 = [f(x2),0];\n\n dataX = dataX1.concat(dataX2).concat(dataX3);\n dataY = dataY1.concat(dataY2).concat(dataY3);\n\nvar shading = brd.create('curve', [dataX,dataY],{strokeWidth:0, fillColor:colour, fillOpacity:0.2});\n\nreturn shading;\n}\n\n\n//Define your functions\nvar f1 = function(x) {\n return a*x+b;\n}\n\nvar f2 = function(x) {\n return a*x*x + c;\n}\n\nvar f3 = function(x) {\n return (x-a)*(x-b);\n}\n\nvar f4 = function(x) {\n return 0.5*(x-a)*(x-b)*(x-c);\n}\n\n\n//Plot the graph and do shading\nswitch(q) {\n case 1:\n brd.create('functiongraph', [f1]);\n shade(f1,x1,x2, 'red');\n break;\n case 2:\n brd.create('functiongraph', [f2]);\n shade(f2,x1,x2,'red');\n break;\n case 3:\n brd.create('functiongraph', [f3]);\n shade(f3,x1,x2,'red');\n shade(f3,x2,x2+2,'green');\n break;\n case 4:\n brd.create('functiongraph', [f4]);\n shade(f4,x1,x2,'red');\n shade(f4,x2,x2+2,'green');\n break\n}\n\n\n\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{plotgraph1(2,x21,x22,-5,25,a2,0,c2)}

\n

This graph represents the function $f(x) = \\simplify{{a2}*x^2+{c2}}$.

\n

Use integration to calculate the area of the shaded region. Give your answer correct to 3 decimal places.

\n

A = [[0]]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the indefinite integral of $f(x) = \\simplify{{a2}*x^2+{c2}}$?

\n

$\\int{f(x)dx}=$

", "answer": "{a2}/3*x^3+{c2}x+C", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "area2", "maxValue": "area2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{plotgraph1(3,x31,x32,-6,15,a3,b3,0)}

\n

This curve has equation $y = \\simplify{x^2-{a3+b3}*x + {a3*b3}}$.

\n

Calculate the total area of the shaded regions. Give your answer correct to 3 decimal places.

\n

A = [[0]]

\n

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "area3", "maxValue": "area3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": false, "timeout": {"action": "warn", "message": "

Time has run out.

"}, "timedwarning": {"action": "warn", "message": "

Time will run out in 5 minutes.

"}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "inreview", "showtotalmarkwhen": "inreview", "showanswerstatewhen": "inreview", "showpartfeedbackmessageswhen": "inreview", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": false, "intro": "

Instructions:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
1. Complete the questions within 90 minutes and achieve 80% or higher.
2. You can take this self-assessment as many times as you need, until you receive a satisfactory grade (you don't need to achieve 80% when you 'give it a go' the first time)
3. Use the \"Print this results summary\" and save as a pdf after you complete your attempt.  You will need the printout showing all questions for your module submission.
", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [{"message": "

Congratulations! You have achieved the minimum threshold for this module's self-assessment.

\n

Use the \"Print this results summary\" and save your attempt as a pdf.  You will need the printout showing all questions for your module submission.

", "threshold": "80"}, {"message": "

Unfortunately you have not achieved the minimum score.

\n

If this is your first 'Give it a go' attempt - don't despair! This is exactly why we take our first attempt - to see how we're going and whether we need more practice in order to complete the quest.

\n

You should still use the \"Print this results summary\" option to save a copy of your results as a pdf, which will help with your learning and can also be shared with your tutors so they can help with certain questions.

\n
If you have tried this test several times and have not been able to pass, then it is strongly advised that you attend class to go over your results with the teaching team. You can attempt the quiz while in class, and discuss your results with the tutors. Do not attempt to try to solve this quiz on your own without understanding your mistakes first. You will likely end up spending far more time than necessary on the module.
", "threshold": 0}], "reviewshowexpectedanswer": true, "showanswerstate": false, "reviewshowfeedback": true, "showactualmark": false, "showtotalmark": false, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "extensions": ["jsxgraph"], "custom_part_types": [], "resources": []}