// Numbas version: finer_feedback_settings {"name": "SIT190 - Module 8 - Self-assessment", "metadata": {"description": "", "licence": "None specified"}, "duration": 5400, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", ""], "variable_overrides": [[], [], [], []], "questions": [{"name": "8.1 Integration: Indefinite integral", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "
Find $\\displaystyle \\int ae ^ {bx}+ c\\sin(dx) + px ^ {q} + k/x \\;dx$.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "\n\tIntegrate the following function $f(x)$.
\n\t
Input the constant of integration as $C$.
Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]
\n\tSplitting the integral into three parts and using the above information we have:
\\[\\begin{eqnarray*}\\simplify[std]{Int({b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3},x)}&=&\\simplify[std]{Int({b} * e ^ ({a}*x),x)+Int({b1} * Sin({a1}*x),x)+Int({a2} * x ^ {c3},x) }\\\\ &=&\\simplify[std]{({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C} \\end{eqnarray*}\\]
$\\simplify[std]{f(x) = {a5}* x^{an5}+ {b5}*x^{bn5}+ {c5}}$
\n$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]
\nInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\nClick on Show steps to get more information. You will not lose any marks by doing so.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a5}/{an5+1})*(x^{(an5 + 1)})+({b5}/{bn5+1})*(x^{(bn5 + 1)})+{c5}*x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input all numbers as integers or fractions and not decimals.
"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[std]{f(x) = {b6} * e ^ ({a6}*x) + {c6}}$
\n$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]
\nInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\nClick on Show steps to get more information. You will not lose any marks by doing so.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C \\end{eqnarray*}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({b6}/{a6}) * (e ^({a6}*x))+{c6}*x +C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input all numbers as integers or fractions and not decimals.
"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[std]{f(x) = {b7} * Sin({a7}*x) + {b8} * Cos({a8}*x) }$
\n$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]
\nInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\nClick on Show steps to get more information. You will not lose any marks by doing so.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;\\cos(ax)\\;dx &=& \\frac{1}{a}\\sin(ax)+C\\\\ \\end{eqnarray*}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(({(-b7)}/{a7}) * Cos({a7}*x)) + (({(b8)}/{a8}) * Sin({a8}*x))+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input all numbers as integers or fractions and not decimals.
"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[std]{f(x) = ({a9} /x) + ({b9} /(x^2)) }$ (use abs(x) for |x|)
\n$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]
\nInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\nClick on Show steps to get more information. You will not lose any marks by doing so.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;\\frac{1}{x}\\;dx&=&\\ln(|x|)+C, \\,\\, {\\rm and} \\,\\, \\frac{1}{x^2}&=x^{-2}& \\end{eqnarray*}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a9}Ln(abs(x))+{-b9}/x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input all numbers as integers or fractions and not decimals.
"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "8.2 Integration: solving for constant", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "Recovering\noriginal function given some information such as derivative and value at some point.
Find the orginal function $f(x)$ given $f^\\prime (x)$ and value $f(x_0) = C_0;$ that is solve for constant for $\\int f^\\prime (x) \\,dx.$
", "advice": "Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]
\n\nFirst integrate:
\n(*) $\\int f^\\prime (x)\\,dx$ = $\\int\\;(a x^n+ c)\\,dx=\\; \\frac{a}{n+1}x^{n+1} + cx +C$
\nthen calculate the value of $C$ from
\n$\\frac{a}{n+1}x_0^{n+1} + cx_0 +C = C_0$
\nand put in back to (*).
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a5": {"name": "a5", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "an5": {"name": "an5", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything", "can_override": false}, "c5": {"name": "c5", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "x0": {"name": "x0", "group": "Ungrouped variables", "definition": "random(-1,0,1,2)", "description": "", "templateType": "anything", "can_override": false}, "C0": {"name": "C0", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "a52": {"name": "a52", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything", "can_override": false}, "an52": {"name": "an52", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything", "can_override": false}, "c52": {"name": "c52", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "x02": {"name": "x02", "group": "Ungrouped variables", "definition": "random(-1,0,1,2)", "description": "", "templateType": "anything", "can_override": false}, "C02": {"name": "C02", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "an": {"name": "an", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "xp0": {"name": "xp0", "group": "Ungrouped variables", "definition": "random(1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "Cp0": {"name": "Cp0", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "xp02": {"name": "xp02", "group": "Ungrouped variables", "definition": "random(1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "Cp02": {"name": "Cp02", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "an2": {"name": "an2", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a5", "an5", "c5", "x0", "C0", "a52", "an52", "c52", "x02", "C02", "a", "an", "c", "xp0", "Cp0", "xp02", "Cp02", "c2", "an2", "a2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$f^\\prime (x) = \\simplify[std]{ {a5}* x^{an5}+ {c5}}, ~~~ f(\\var{x0}) = \\var{C0}$
\n$\\displaystyle \\int\\;(\\simplify[std]{ {a5}* x^{an5}+ {c5}})\\,dx=\\;$[[0]]
\n$f (x)=\\;$[[1]]
\nInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\nClick on Show steps to get more information. You will not lose any marks by doing so.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a5}/{an5+1})*(x^{(an5+1)})+{c5}*x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input all numbers as integers or fractions and not decimals.
"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a5}/{an5+1})*(x^{(an5+1)})+{c5}*x+({C0}-({a5}/{an5+1})*({x0}^{(an5+1)})-{c5*x0})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$f^\\prime (x) = \\simplify[std]{ {a} sin({an}x) + {c}}, ~~~ f(\\var{xp0*pi}) = \\var{Cp0}$
\n$\\displaystyle \\int\\;(\\simplify[std]{ {a} sin({an}x)+ {c}})\\,dx=\\;$[[0]]
\n$f(x)=\\;$[[1]]
\nInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\nPut 'pi' for $\\pi$ and do not use decimals.
\nClick on Show steps to get more information. You will not lose any marks by doing so.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{-a/an}*cos({an}x)+ {c}x + C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input all numbers as integers or fractions and not decimals.
"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{-a/an}*cos({an}x)+{c}x + {Cp0} -{-a/an}*cos({an*xp0}pi)- {c*xp0}pi", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "8.3 Definite Integrals - 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "Definite Integrals
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following definite integrals, giving your answer as a fraction as necessary.
", "advice": "To evaluate a definite integral we must first integrate the function (we do not need to include c, the constant of integration) and then substitute in the given limits.
\n\n(a)
\n$\\int_\\var{a}^\\var{b}(1 + \\var{c}x)\\mathrm{dx} = \\left[x + \\var{c/2}x^2\\right]_\\var{a}^\\var{b}= [(\\var{b})+ \\var{c/2}(\\var{b})^2]-[(\\var{a}) + \\var{c/2}(\\var{a})^2]=\\simplify{{b}+ {c/2}{b}^2-{a} - {c/2}{a}^2}$
\n\n(b)
\n$\\int_\\var{d}^\\var{f} (x^2 + \\var{g}x-\\var{h})\\mathrm{dx}= \\left[\\frac{x^3}{3} + \\var{g/2}x^2-\\var{h}x\\right]_\\var{d}^\\var{f}=[\\frac{(\\var{f})^3}{3} + \\var{g/2}(\\var{f})^2-\\var{h}(\\var{f})]-[\\frac{(\\var{d})^3}{3} + \\var{g/2}(\\var{d})^2-\\var{h}(\\var{d})]=\\var{f^3/3 + g/2*f^2-h*f-(d^3/3 + g/2*d^2-h*d)}$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Ungrouped variables", "definition": "random(-4..0)", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-4..0)", "description": "", "templateType": "anything", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-4..0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "h", "k", "j", "l"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\int_\\var{a}^\\var{b}(1 + \\var{c}x)\\mathrm{dx}$
", "minValue": "{b}+{c}{b}^2/2-{a}-{a}^2{c}/2", "maxValue": "{b}+{c}{b}^2/2-{a}-{a}^2{c}/2", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\int_\\var{d}^\\var{f} (x^2 + \\var{g}x-\\var{h})\\mathrm{dx}$
", "minValue": "{f}^3/3+{g}{f}^2/2-{h}{f}-{d}^3/3-{g}{d}^2/2+{h}{d}", "maxValue": "{f}^3/3+{g}{f}^2/2-{h}{f}-{d}^3/3-{g}{d}^2/2+{h}{d}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "8.5 Definite integrals - 4", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "J. Richard Snape", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1700/"}, {"name": "Anna Strzelecka", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2945/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}, {"name": "Simon James", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18202/"}], "tags": [], "metadata": {"description": "Two quadratic graphs are sketched with some area beneath them shaded. Question is to determine the area of shaded regions using integration. The first graph's area is all above the $x$-axis. The second graph has some area above and some below the $x$-axis.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x11": {"name": "x11", "group": "linear graph (not used)", "definition": "random(1..2)", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "c quadratic. neg region", "definition": "a3+random(3..4)", "description": "", "templateType": "anything", "can_override": false}, "x12": {"name": "x12", "group": "linear graph (not used)", "definition": "random(1..4) + x11", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "b) quadratic. no neg region", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "b) quadratic. no neg region", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "linear graph (not used)", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "x33": {"name": "x33", "group": "c quadratic. neg region", "definition": "x32+2", "description": "", "templateType": "anything", "can_override": false}, "area2": {"name": "area2", "group": "b) quadratic. no neg region", "definition": "(a2*x22^3/3+c2*x22)-(a2*x21^3/3+c2*x21)", "description": "", "templateType": "anything", "can_override": false}, "x42": {"name": "x42", "group": "Ungrouped variables", "definition": "b4", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "linear graph (not used)", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "b4": {"name": "b4", "group": "Ungrouped variables", "definition": "a4+random(2..3)", "description": "", "templateType": "anything", "can_override": false}, "c4": {"name": "c4", "group": "Ungrouped variables", "definition": "b4+2", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "c quadratic. neg region", "definition": "random(-3..-1)", "description": "", "templateType": "anything", "can_override": false}, "x31": {"name": "x31", "group": "c quadratic. neg region", "definition": "b3-random(2..3)", "description": "", "templateType": "anything", "can_override": false}, "area3": {"name": "area3", "group": "c quadratic. neg region", "definition": "(x33^3/3 - 0.5*(a3+b3)*x33^2+a3*b3*x33)-2*(x32^3/3 - 0.5*(a3+b3)*x32^2+a3*b3*x32)+(x31^3/3 - 0.5*(a3+b3)*x31^2+a3*b3*x31)", "description": "", "templateType": "anything", "can_override": false}, "x32": {"name": "x32", "group": "c quadratic. neg region", "definition": "b3", "description": "", "templateType": "anything", "can_override": false}, "x41": {"name": "x41", "group": "Ungrouped variables", "definition": "a4", "description": "", "templateType": "anything", "can_override": false}, "x22": {"name": "x22", "group": "b) quadratic. no neg region", "definition": "random(3..5)+x21", "description": "", "templateType": "anything", "can_override": false}, "x21": {"name": "x21", "group": "b) quadratic. no neg region", "definition": "random(-4..-2)", "description": "", "templateType": "anything", "can_override": false}, "a4": {"name": "a4", "group": "Ungrouped variables", "definition": "random(-3..-2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a4", "b4", "c4", "x41", "x42"], "variable_groups": [{"name": "linear graph (not used)", "variables": ["x11", "x12", "a1", "b1"]}, {"name": "b) quadratic. no neg region", "variables": ["x21", "x22", "a2", "c2", "area2"]}, {"name": "c quadratic. neg region", "variables": ["a3", "b3", "x31", "x32", "x33", "area3"]}], "functions": {"plotgraph1": {"parameters": [["q", "number"], ["x1", "number"], ["x2", "number"], ["ymin", "number"], ["ymax", "number"], ["a", "number"], ["b", "number"], ["c", "number"]], "type": "html", "language": "javascript", "definition": "// Shading under a graph! This functions plots a graph of y = a(x-r1)(x-r2)\n// It creates the board, sets it up, then returns an\n// HTML div tag containing the board.\n\n\n// Max and min x and y values for the axis.\nvar xmin = -7;\nvar xmax = 7;\n\n// First, make the JSXGraph board.\nvar div = Numbas.extensions.jsxgraph.makeBoard(\n '500px',\n '500px',\n {\n boundingBox: [xmin,ymax,xmax,ymin],\n axis: false,\n showNavigation: false,\n grid: true\n }\n);\n\n\n\n// div.board is the object created by JSXGraph, which you use to \n// manipulate elements\nvar brd = div.board; \n\n// create the x-axis.\nvar xaxis = brd.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = brd.create('ticks',[xaxis,1],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = brd.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nyticks = brd.create('ticks',[yaxis,5],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 4\n});\n\n\n\n// This function shades in the area below the graph of f\n// between the x values x1 and x2\n\nvar shade = function(f,x1,x2,colour) {\n var dataX1 = [x1,x1];\n var dataY1 = [0,f(x1)];\n\n var dataX2 = [];\n var dataY2 = [];\n for (var i = x1; i <= x2; i = i+0.1) {\n dataX2.push(i);\n dataY2.push(f(i));\n }\n\n var dataX3 = [x2,x2];\n var dataY3 = [f(x2),0];\n\n dataX = dataX1.concat(dataX2).concat(dataX3);\n dataY = dataY1.concat(dataY2).concat(dataY3);\n\nvar shading = brd.create('curve', [dataX,dataY],{strokeWidth:0, fillColor:colour, fillOpacity:0.2});\n\nreturn shading;\n}\n\n\n//Define your functions\nvar f1 = function(x) {\n return a*x+b;\n}\n\nvar f2 = function(x) {\n return a*x*x + c;\n}\n\nvar f3 = function(x) {\n return (x-a)*(x-b);\n}\n\nvar f4 = function(x) {\n return 0.5*(x-a)*(x-b)*(x-c);\n}\n\n\n//Plot the graph and do shading\nswitch(q) {\n case 1:\n brd.create('functiongraph', [f1]);\n shade(f1,x1,x2, 'red');\n break;\n case 2:\n brd.create('functiongraph', [f2]);\n shade(f2,x1,x2,'red');\n break;\n case 3:\n brd.create('functiongraph', [f3]);\n shade(f3,x1,x2,'red');\n shade(f3,x2,x2+2,'green');\n break;\n case 4:\n brd.create('functiongraph', [f4]);\n shade(f4,x1,x2,'red');\n shade(f4,x2,x2+2,'green');\n break\n}\n\n\n\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{plotgraph1(2,x21,x22,-5,25,a2,0,c2)}
\nThis graph represents the function $f(x) = \\simplify{{a2}*x^2+{c2}}$.
\nUse integration to calculate the area of the shaded region. Give your answer correct to 3 decimal places.
\nA = [[0]]
", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the indefinite integral of $f(x) = \\simplify{{a2}*x^2+{c2}}$?
\n$\\int{f(x)dx}=$
", "answer": "{a2}/3*x^3+{c2}x+C", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "area2", "maxValue": "area2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{plotgraph1(3,x31,x32,-6,15,a3,b3,0)}
\nThis curve has equation $y = \\simplify{x^2-{a3+b3}*x + {a3*b3}}$.
\nCalculate the total area of the shaded regions. Give your answer correct to 3 decimal places.
\nA = [[0]]
\n\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "area3", "maxValue": "area3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": false, "timeout": {"action": "warn", "message": "Time has run out.
"}, "timedwarning": {"action": "warn", "message": "Time will run out in 5 minutes.
"}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "inreview", "showtotalmarkwhen": "inreview", "showanswerstatewhen": "inreview", "showpartfeedbackmessageswhen": "inreview", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": false, "intro": "Instructions:
\n| 1. | \nComplete the questions within 90 minutes and achieve 80% or higher. | \n
| 2. | \nYou can take this self-assessment as many times as you need, until you receive a satisfactory grade (you don't need to achieve 80% when you 'give it a go' the first time) | \n
| 3. | \nUse the \"Print this results summary\" and save as a pdf after you complete your attempt. You will need the printout showing all questions for your module submission. | \n
Congratulations! You have achieved the minimum threshold for this module's self-assessment.
\nUse the \"Print this results summary\" and save your attempt as a pdf. You will need the printout showing all questions for your module submission.
", "threshold": "80"}, {"message": "Unfortunately you have not achieved the minimum score.
\nIf this is your first 'Give it a go' attempt - don't despair! This is exactly why we take our first attempt - to see how we're going and whether we need more practice in order to complete the quest.
\nYou should still use the \"Print this results summary\" option to save a copy of your results as a pdf, which will help with your learning and can also be shared with your tutors so they can help with certain questions.
\n