// Numbas version: finer_feedback_settings {"name": "SIT190 - week 9 - quiz -short", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questions": [{"name": "Musa's copy of 3 Integration: Indefinite integral", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Find $\\displaystyle \\int ae ^ {bx}+ c\\sin(dx) + px ^ {q} + k/x \\;dx$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "\n\t

Integrate the following function $f(x)$.

\n\t

 
Input the constant of integration as $C$.

\n\t", "advice": "\n\t

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]

\n\t

Splitting the integral into three parts and using the above information we have:
\\[\\begin{eqnarray*}\\simplify[std]{Int({b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3},x)}&=&\\simplify[std]{Int({b} * e ^ ({a}*x),x)+Int({b1} * Sin({a1}*x),x)+Int({a2} * x ^ {c3},x) }\\\\ &=&\\simplify[std]{({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C} \\end{eqnarray*}\\]

\n\t", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "s5*random(2..8)", "description": "", "templateType": "anything"}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "s4*random(3..9)", "description": "", "templateType": "anything"}, "s5": {"name": "s5", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s2*random(2..9)", "description": "", "templateType": "anything"}, "s3": {"name": "s3", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "s3*random(2..9)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "s1*random(2..5)", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "s4": {"name": "s4", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "a5": {"name": "a5", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything"}, "an5": {"name": "an5", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything"}, "b5": {"name": "b5", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "bn5": {"name": "bn5", "group": "Ungrouped variables", "definition": "random(-3,-2,2,3)", "description": "", "templateType": "anything"}, "c5": {"name": "c5", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "c6": {"name": "c6", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "b6": {"name": "b6", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "a6": {"name": "a6", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "b7": {"name": "b7", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "b8": {"name": "b8", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}, "a7": {"name": "a7", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything"}, "a8": {"name": "a8", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything"}, "a9": {"name": "a9", "group": "Ungrouped variables", "definition": "random(-5..5 except [0])", "description": "", "templateType": "anything"}, "b9": {"name": "b9", "group": "Ungrouped variables", "definition": "random(-9..9 except [-1,0,1])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "s3", "s2", "s1", "s5", "s4", "a1", "a2", "b1", "c3", "a5", "an5", "b5", "bn5", "c5", "c6", "b6", "a6", "b7", "b8", "a7", "a8", "a9", "b9"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\simplify[std]{f(x) = {a5}* x^{an5}+ {b5}*x^{bn5}+ {c5}}$

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "({a5}/{an5+1})*(x^{(an5 + 1)})+({b5}/{bn5+1})*(x^{(bn5 + 1)})+{c5}*x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\simplify[std]{f(x) = {b6} * e ^ ({a6}*x) + {c6}}$

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "({b6}/{a6}) * (e ^({a6}*x))+{c6}*x +C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\simplify[std]{f(x) =  {b7} * Sin({a7}*x) + {b8} * Cos({a8}*x) }$

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;\\cos(ax)\\;dx &=& \\frac{1}{a}\\sin(ax)+C\\\\ \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "(({(-b7)}/{a7}) * Cos({a7}*x)) + (({(b8)}/{a8}) * Sin({a8}*x))+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\simplify[std]{f(x) = ({a9} /x) +  ({b9} /(x^2)) }$  (use abs(x) for |x|)

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;\\frac{1}{x}\\;dx&=&\\ln(|x|)+C, \\,\\, {\\rm and} \\,\\, \\frac{1}{x^2}&=x^{-2}& \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{a9}Ln(abs(x))+{-b9}/x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "type": "question"}, {"name": "Musa's copy of 3 Integration: solving for constant", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Recovering\noriginal function given some information such as derivative and value at some point.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Find the orginal function $f(x)$ given $f^\\prime (x)$ and value $f(x_0) = C_0;$ that is solve for constant for  $\\int f^\\prime (x) \\,dx.$

", "advice": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]

\n

\n

First integrate:

\n

(*)  $\\int f^\\prime (x)\\,dx$ = $\\int\\;(a x^n+ c)\\,dx=\\; \\frac{a}{n+1}x^{n+1} + cx +C$

\n

then calculate the value of $C$ from

\n

$\\frac{a}{n+1}x_0^{n+1} + cx_0 +C = C_0$

\n

and put in back to (*).

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "variables": {"a5": {"name": "a5", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything"}, "an5": {"name": "an5", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything"}, "c5": {"name": "c5", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "x0": {"name": "x0", "group": "Ungrouped variables", "definition": "random(-1,0,1,2)", "description": "", "templateType": "anything"}, "C0": {"name": "C0", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "a52": {"name": "a52", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything"}, "an52": {"name": "an52", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything"}, "c52": {"name": "c52", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "x02": {"name": "x02", "group": "Ungrouped variables", "definition": "random(-1,0,1,2)", "description": "", "templateType": "anything"}, "C02": {"name": "C02", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "an": {"name": "an", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "xp0": {"name": "xp0", "group": "Ungrouped variables", "definition": "random(1,2,3)", "description": "", "templateType": "anything"}, "Cp0": {"name": "Cp0", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "xp02": {"name": "xp02", "group": "Ungrouped variables", "definition": "random(1,2,3)", "description": "", "templateType": "anything"}, "Cp02": {"name": "Cp02", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "an2": {"name": "an2", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything"}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a5", "an5", "c5", "x0", "C0", "a52", "an52", "c52", "x02", "C02", "a", "an", "c", "xp0", "Cp0", "xp02", "Cp02", "c2", "an2", "a2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$f^\\prime (x) = \\simplify[std]{ {a5}* x^{an5}+ {c5}}, ~~~ f(\\var{x0}) = \\var{C0}$

\n

$\\displaystyle \\int\\;(\\simplify[std]{ {a5}* x^{an5}+ {c5}})\\,dx=\\;$[[0]]

\n

$f (x)=\\;$[[1]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "({a5}/{an5+1})*(x^{(an5+1)})+{c5}*x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "({a5}/{an5+1})*(x^{(an5+1)})+{c5}*x+({C0}-({a5}/{an5+1})*({x0}^{(an5+1)})-{c5*x0})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$f^\\prime (x) = \\simplify[std]{ {a} sin({an}x) + {c}}, ~~~ f(\\var{xp0*pi}) = \\var{Cp0}$

\n

$\\displaystyle \\int\\;(\\simplify[std]{ {a} sin({an}x)+ {c}})\\,dx=\\;$[[0]]

\n

$f(x)=\\;$[[1]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Put 'pi' for $\\pi$ and do not use decimals.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{-a/an}*cos({an}x)+ {c}x + C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{-a/an}*cos({an}x)+{c}x + {Cp0} -{-a/an}*cos({an*xp0}pi)- {c*xp0}pi", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "type": "question"}]}], "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "type": "exam", "contributors": [{"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "extensions": [], "custom_part_types": [], "resources": []}