// Numbas version: finer_feedback_settings {"name": "SIT190 - week 10 -quiz -short", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questions": [{"name": "Musa's copy of 3 Definite Integrals - 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Definite Integrals

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Evaluate the following definite integrals, giving your answer as a fraction as necessary.

", "advice": "

To evaluate a definite integral we must first integrate the function (we do not need to include c, the constant of integration) and then substitute in the given limits.

\n

\n

(a)

\n

$\\int_\\var{a}^\\var{b}(1 + \\var{c}x)\\mathrm{dx} = \\left[x + \\var{c/2}x^2\\right]_\\var{a}^\\var{b}= [(\\var{b})+ \\var{c/2}(\\var{b})^2]-[(\\var{a}) + \\var{c/2}(\\var{a})^2]=\\simplify{{b}+ {c/2}{b}^2-{a} - {c/2}{a}^2}$

\n

\n

(b)

\n

$\\int_\\var{d}^\\var{f} (x^2 + \\var{g}x-\\var{h})\\mathrm{dx}= \\left[\\frac{x^3}{3} + \\var{g/2}x^2-\\var{h}x\\right]_\\var{d}^\\var{f}=[\\frac{(\\var{f})^3}{3} + \\var{g/2}(\\var{f})^2-\\var{h}(\\var{f})]-[\\frac{(\\var{d})^3}{3} + \\var{g/2}(\\var{d})^2-\\var{h}(\\var{d})]=\\var{f^3/3 + g/2*f^2-h*f-(d^3/3 + g/2*d^2-h*d)}$

", "rulesets": {}, "variables": {"f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything"}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything"}, "j": {"name": "j", "group": "Ungrouped variables", "definition": "random(-4..0)", "description": "", "templateType": "anything"}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-4..0)", "description": "", "templateType": "anything"}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything"}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-4..0)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "h", "k", "j", "l"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\int_\\var{a}^\\var{b}(1 + \\var{c}x)\\mathrm{dx}$

", "minValue": "{b}+{c}{b}^2/2-{a}-{a}^2{c}/2", "maxValue": "{b}+{c}{b}^2/2-{a}-{a}^2{c}/2", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\int_\\var{d}^\\var{f} (x^2 + \\var{g}x-\\var{h})\\mathrm{dx}$

", "minValue": "{f}^3/3+{g}{f}^2/2-{h}{f}-{d}^3/3-{g}{d}^2/2+{h}{d}", "maxValue": "{f}^3/3+{g}{f}^2/2-{h}{f}-{d}^3/3-{g}{d}^2/2+{h}{d}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "type": "question"}, {"name": "Musa's copy of 3 Definite integrals - 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Definite Intgerals

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Find the following definite integrals

", "advice": "

First integrate the function and then substitute in the limits given

", "rulesets": {}, "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "3*a*a", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\int_1^\\var{b}(\\frac{x^3+\\var{c}x^6}{x^4})\\mathrm{dx}$

\n

You may have $\\ln$ terms in your answer.

", "answer": "ln({b})+{c}{b}^3/3-{c}/3", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\int_0^\\var{d}\\sqrt{\\frac{3}{z}}\\mathrm{dz}$

", "minValue": "6{a}", "maxValue": "6{a}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "type": "question"}, {"name": "Musa's copy of 3 Definite integrals - 4", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "J. Richard Snape", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1700/"}, {"name": "Anna Strzelecka", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2945/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "tags": [], "metadata": {"description": "

Two quadratic graphs are sketched with some area beneath them shaded. Question is to determine the area of shaded regions using integration. The first graph's area is all above the $x$-axis. The second graph has some area above and some below the $x$-axis.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"x11": {"name": "x11", "group": "linear graph (not used)", "definition": "random(1..2)", "description": "", "templateType": "anything"}, "b3": {"name": "b3", "group": "c quadratic. neg region", "definition": "a3+random(3..4)", "description": "", "templateType": "anything"}, "x12": {"name": "x12", "group": "linear graph (not used)", "definition": "random(1..4) + x11", "description": "", "templateType": "anything"}, "c2": {"name": "c2", "group": "b) quadratic. no neg region", "definition": "random(1..4)", "description": "", "templateType": "anything"}, "a2": {"name": "a2", "group": "b) quadratic. no neg region", "definition": "1", "description": "", "templateType": "anything"}, "b1": {"name": "b1", "group": "linear graph (not used)", "definition": "random(1..3)", "description": "", "templateType": "anything"}, "x33": {"name": "x33", "group": "c quadratic. neg region", "definition": "x32+2", "description": "", "templateType": "anything"}, "area2": {"name": "area2", "group": "b) quadratic. no neg region", "definition": "(a2*x22^3/3+c2*x22)-(a2*x21^3/3+c2*x21)", "description": "", "templateType": "anything"}, "x42": {"name": "x42", "group": "Ungrouped variables", "definition": "b4", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "linear graph (not used)", "definition": "1", "description": "", "templateType": "anything"}, "b4": {"name": "b4", "group": "Ungrouped variables", "definition": "a4+random(2..3)", "description": "", "templateType": "anything"}, "c4": {"name": "c4", "group": "Ungrouped variables", "definition": "b4+2", "description": "", "templateType": "anything"}, "a3": {"name": "a3", "group": "c quadratic. neg region", "definition": "random(-3..-1)", "description": "", "templateType": "anything"}, "x31": {"name": "x31", "group": "c quadratic. neg region", "definition": "b3-random(2..3)", "description": "", "templateType": "anything"}, "area3": {"name": "area3", "group": "c quadratic. neg region", "definition": "(x33^3/3 - 0.5*(a3+b3)*x33^2+a3*b3*x33)-2*(x32^3/3 - 0.5*(a3+b3)*x32^2+a3*b3*x32)+(x31^3/3 - 0.5*(a3+b3)*x31^2+a3*b3*x31)", "description": "", "templateType": "anything"}, "x32": {"name": "x32", "group": "c quadratic. neg region", "definition": "b3", "description": "", "templateType": "anything"}, "x41": {"name": "x41", "group": "Ungrouped variables", "definition": "a4", "description": "", "templateType": "anything"}, "x22": {"name": "x22", "group": "b) quadratic. no neg region", "definition": "random(3..5)+x21", "description": "", "templateType": "anything"}, "x21": {"name": "x21", "group": "b) quadratic. no neg region", "definition": "random(-4..-2)", "description": "", "templateType": "anything"}, "a4": {"name": "a4", "group": "Ungrouped variables", "definition": "random(-3..-2)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a4", "b4", "c4", "x41", "x42"], "variable_groups": [{"name": "linear graph (not used)", "variables": ["x11", "x12", "a1", "b1"]}, {"name": "b) quadratic. no neg region", "variables": ["x21", "x22", "a2", "c2", "area2"]}, {"name": "c quadratic. neg region", "variables": ["a3", "b3", "x31", "x32", "x33", "area3"]}], "functions": {"plotgraph1": {"parameters": [["q", "number"], ["x1", "number"], ["x2", "number"], ["ymin", "number"], ["ymax", "number"], ["a", "number"], ["b", "number"], ["c", "number"]], "type": "html", "language": "javascript", "definition": "// Shading under a graph! This functions plots a graph of y = a(x-r1)(x-r2)\n// It creates the board, sets it up, then returns an\n// HTML div tag containing the board.\n\n\n// Max and min x and y values for the axis.\nvar xmin = -7;\nvar xmax = 7;\n\n// First, make the JSXGraph board.\nvar div = Numbas.extensions.jsxgraph.makeBoard(\n '500px',\n '500px',\n {\n boundingBox: [xmin,ymax,xmax,ymin],\n axis: false,\n showNavigation: false,\n grid: true\n }\n);\n\n\n\n// div.board is the object created by JSXGraph, which you use to \n// manipulate elements\nvar brd = div.board; \n\n// create the x-axis.\nvar xaxis = brd.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = brd.create('ticks',[xaxis,1],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = brd.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nyticks = brd.create('ticks',[yaxis,5],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 4\n});\n\n\n\n// This function shades in the area below the graph of f\n// between the x values x1 and x2\n\nvar shade = function(f,x1,x2,colour) {\n var dataX1 = [x1,x1];\n var dataY1 = [0,f(x1)];\n\n var dataX2 = [];\n var dataY2 = [];\n for (var i = x1; i <= x2; i = i+0.1) {\n dataX2.push(i);\n dataY2.push(f(i));\n }\n\n var dataX3 = [x2,x2];\n var dataY3 = [f(x2),0];\n\n dataX = dataX1.concat(dataX2).concat(dataX3);\n dataY = dataY1.concat(dataY2).concat(dataY3);\n\nvar shading = brd.create('curve', [dataX,dataY],{strokeWidth:0, fillColor:colour, fillOpacity:0.2});\n\nreturn shading;\n}\n\n\n//Define your functions\nvar f1 = function(x) {\n return a*x+b;\n}\n\nvar f2 = function(x) {\n return a*x*x + c;\n}\n\nvar f3 = function(x) {\n return (x-a)*(x-b);\n}\n\nvar f4 = function(x) {\n return 0.5*(x-a)*(x-b)*(x-c);\n}\n\n\n//Plot the graph and do shading\nswitch(q) {\n case 1:\n brd.create('functiongraph', [f1]);\n shade(f1,x1,x2, 'red');\n break;\n case 2:\n brd.create('functiongraph', [f2]);\n shade(f2,x1,x2,'red');\n break;\n case 3:\n brd.create('functiongraph', [f3]);\n shade(f3,x1,x2,'red');\n shade(f3,x2,x2+2,'green');\n break;\n case 4:\n brd.create('functiongraph', [f4]);\n shade(f4,x1,x2,'red');\n shade(f4,x2,x2+2,'green');\n break\n}\n\n\n\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{plotgraph1(2,x21,x22,-5,25,a2,0,c2)}

\n

This graph represents the function $f(x) = \\simplify{{a2}*x^2+{c2}}$.

\n

Use integration to calculate the area of the shaded region. Give your answer correct to 3 decimal places.

\n

A = [[0]]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the indefinite integral of $f(x) = \\simplify{{a2}*x^2+{c2}}$?

\n

$\\int{f(x)dx}=$

", "answer": "{a2}/3*x^3+{c2}x+C", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "area2", "maxValue": "area2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{plotgraph1(3,x31,x32,-6,15,a3,b3,0)}

\n

This curve has equation $y = \\simplify{x^2-{a3+b3}*x + {a3*b3}}$.

\n

Calculate the total area of the shaded regions. Give your answer correct to 3 decimal places.

\n

A = [[0]]

\n

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "area3", "maxValue": "area3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "type": "exam", "contributors": [{"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}], "extensions": ["jsxgraph"], "custom_part_types": [], "resources": []}