#### Considering matrices of the same size, addition is achieved by adding corresponding elements:

\n

If     $A= \\left( \\begin{array}{ccc} a_{11} & a_{12} \\\\ a_{21} & a_{22} \\\\ a_{31} & a_{32} \\end{array} \\right)$     and     $B= \\left( \\begin{array}{ccc} b_{11} & b_{12} \\\\ b_{21} & b_{22} \\\\ b_{31} & b_{32} \\end{array} \\right)$     then

\n

$A+B=\\left( \\begin{array}{ccc} a_{11}+b_{11} & a_{12}+b_{12} \\\\ a_{21}+b_{21} & a_{22}+b_{22} \\\\ a_{31}+b_{31} & a_{32}+b_{32} \\end{array} \\right)$

#### We are asked to carry out several matrix subtractions.

\n

Addition is achieved by subtracting corresponding elements:

\n

\n

Using this technique results in:

\n

$A=\\var{A}$          $B=\\var{A2}$

\n

\n

$A-B=\\var{ad1}$

\n

\n

\n

$C=\\var{B}$          $D=\\var{B2}$

\n

\n

$C-D=\\var{ad2}$

\n

\n

\n

$E=\\var{C}$          $F=\\var{C2}$

\n

\n

$E-F=\\var{ad3}$

\n

\n

\n

$G=\\var{D}$          $H=\\var{D2}$

\n

\n

$G-H=\\var{ad4}$

\n

\n

\n

$I=\\var{EE}$          $J=\\var{EE2}$

\n

$I-J=\\var{ad5}$

\n

\n

\n

\n

#### Carry out the addition of the following matrices:

\n

\n

\n

$A=\\var{A}$          $B=\\var{A2}$

\n

\n

$A+B=$ [[0]]

\n

\n

\n

$C=\\var{B}$          $D=\\var{B2}$

\n

\n

$C+D=$ [[1]]

\n

\n

\n

$E=\\var{C}$          $F=\\var{C2}$

\n

\n

$E+F=$ [[2]]

\n

\n

\n

$G=\\var{D}$          $H=\\var{D2}$

\n

\n

$G+H=$ [[3]]

\n

\n

\n

$I=\\var{EE}$          $J=\\var{EE2}$

\n

\n

$I+J=$ [[4]]

\n

#### Considering matrices of the same size, subtraction is achieved by subtracting corresponding elements:

\n

If     $A= \\left( \\begin{array}{ccc} a_{11} & a_{12} \\\\ a_{21} & a_{22} \\\\ a_{31} & a_{32} \\end{array} \\right)$     and     $B= \\left( \\begin{array}{ccc} b_{11} & b_{12} \\\\ b_{21} & b_{22} \\\\ b_{31} & b_{32} \\end{array} \\right)$     then

\n

$A-B=\\left( \\begin{array}{ccc} a_{11}-b_{11} & a_{12}-b_{12} \\\\ a_{21}-b_{21} & a_{22}-b_{22} \\\\ a_{31}-b_{31} & a_{32}-b_{32} \\end{array} \\right)$

#### We are asked to carry out several matrix subtractions.

\n

Addition is achieved by subtracting corresponding elements:

\n

\n

Using this technique results in:

\n

$A=\\var{A}$          $B=\\var{A2}$

\n

\n

$A-B=\\var{ad1}$

\n

\n

\n

$C=\\var{B}$          $D=\\var{B2}$

\n

\n

$C-D=\\var{ad2}$

\n

\n

\n

$E=\\var{C}$          $F=\\var{C2}$

\n

\n

$E-F=\\var{ad3}$

\n

\n

\n

$G=\\var{D}$          $H=\\var{D2}$

\n

\n

$G-H=\\var{ad4}$

\n

\n

\n

$I=\\var{EE}$          $J=\\var{EE2}$

\n

$I-J=\\var{ad5}$

\n

\n

\n

\n

#### Carry out the subtraction of the following matrices:

\n

\n

\n

$A=\\var{A}$          $B=\\var{A2}$

\n

\n

$A-B=$ [[0]]

\n

\n

\n

$C=\\var{B}$          $D=\\var{B2}$

\n

\n

$C-D=$ [[1]]

\n

\n

\n

$E=\\var{C}$          $F=\\var{C2}$

\n

\n

$E-F=$ [[2]]

\n

\n

\n

$G=\\var{D}$          $H=\\var{D2}$

\n

\n

$G-H=$ [[3]]

\n

\n

\n

$I=\\var{EE}$          $J=\\var{EE2}$

\n

\n

$I-J=$ [[4]]

\n

#### Considering matrices of the same size, addition is achieved by adding corresponding elements:

\n

If     $A= \\left( \\begin{array}{ccc} a_{11} & a_{12} \\\\ a_{21} & a_{22} \\\\ a_{31} & a_{32} \\end{array} \\right)$     and     $B= \\left( \\begin{array}{ccc} b_{11} & b_{12} \\\\ b_{21} & b_{22} \\\\ b_{31} & b_{32} \\end{array} \\right)$     then

\n

$A+B=\\left( \\begin{array}{ccc} a_{11}+b_{11} & a_{12}+b_{12} \\\\ a_{21}+b_{21} & a_{22}+b_{22} \\\\ a_{31}+b_{31} & a_{32}+b_{32} \\end{array} \\right)$

\n

\n

\n

Using this technique results in:

\n

$A=\\var{A}$          $B=\\var{A2}$

\n

\n

$A+B=\\var{ad1}$

\n

\n

\n

$C=\\var{B}$          $D=\\var{B2}$

\n

\n

$C+D=\\var{ad2}$

\n

\n

\n

$E=\\var{C}$          $F=\\var{C2}$

\n

\n

$E+F=\\var{ad3}$

\n

\n

\n

$G=\\var{D}$          $H=\\var{D2}$

\n

\n

$G+H=\\var{ad4}$

\n

\n

\n

$I=\\var{EE}$          $J=\\var{EE2}$

\n

$I+J=\\var{ad5}$

\n

\n

\n

\n

#### Carry out the addition of the following matrices:

\n

You will need to define the size of the matrix before entering your answer.

\n

\n

\n

$A=\\var{A}$          $B=\\var{A2}$

\n

\n

$A+B=$ [[0]]

\n

\n

\n

$C=\\var{B}$          $D=\\var{B2}$

\n

\n

$C+D=$ [[1]]

\n

\n

\n

$E=\\var{C}$          $F=\\var{C2}$

\n

\n

$E+F=$ [[2]]

\n

\n

\n

$G=\\var{D}$          $H=\\var{D2}$

\n

\n

$G+H=$ [[3]]

\n

\n

\n

$I=\\var{EE}$          $J=\\var{EE2}$

\n

$I+J=$ [[4]]

\n

#### Considering matrices of the same size, subtraction is achieved by subtracting corresponding elements:

\n

If     $A= \\left( \\begin{array}{ccc} a_{11} & a_{12} \\\\ a_{21} & a_{22} \\\\ a_{31} & a_{32} \\end{array} \\right)$     and     $B= \\left( \\begin{array}{ccc} b_{11} & b_{12} \\\\ b_{21} & b_{22} \\\\ b_{31} & b_{32} \\end{array} \\right)$     then

\n

$A-B=\\left( \\begin{array}{ccc} a_{11}-b_{11} & a_{12}-b_{12} \\\\ a_{21}-b_{21} & a_{22}-b_{22} \\\\ a_{31}-b_{31} & a_{32}-b_{32} \\end{array} \\right)$

#### We are asked to carry out several matrix subtractions.

\n

Addition is achieved by subtracting corresponding elements:

\n

\n

Using this technique results in:

\n

$A=\\var{A}$          $B=\\var{A2}$

\n

\n

$A-B=\\var{ad1}$

\n

\n

\n

$C=\\var{B}$          $D=\\var{B2}$

\n

\n

$C-D=\\var{ad2}$

\n

\n

\n

$E=\\var{C}$          $F=\\var{C2}$

\n

\n

$E-F=\\var{ad3}$

\n

\n

\n

$G=\\var{D}$          $H=\\var{D2}$

\n

\n

$G-H=\\var{ad4}$

\n

\n

\n

$I=\\var{EE}$          $J=\\var{EE2}$

\n

$I-J=\\var{ad5}$

\n

\n

\n

\n

#### Carry out the subtraction of the following matrices:

\n

\n

\n

$A=\\var{A}$          $B=\\var{A2}$

\n

\n

$A-B=$ [[0]]

\n

\n

\n

$C=\\var{B}$          $D=\\var{B2}$

\n

\n

$C-D=$ [[1]]

\n

\n

\n

$E=\\var{C}$          $F=\\var{C2}$

\n

\n

$E-F=$ [[2]]

\n

\n

\n

$G=\\var{D}$          $H=\\var{D2}$

\n

\n

$G-H=$ [[3]]

\n

\n

\n

$I=\\var{EE}$          $J=\\var{EE2}$

\n

\n

$I-J=$ [[4]]

\n