// Numbas version: finer_feedback_settings {"name": "01. Trigonometry Review", "metadata": {"description": "
Homework Set. Three problems to brush up on trig skills. Right triangles and sine and cosine law.
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "variable_overrides": [[], [], []], "questions": [{"name": "Sine and Cosine rules", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 12, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/12/edit"}, "name": "Angle quantity 2020", "short_name": "angle", "description": "Adjusts all angles to 0 < $\\theta$ < 360.
\nAccepts '°' and 'deg' as units.
\nPenalizes if not close enough or no units.
\n90° = -270° = 450°
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings['expected_answer']) ", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "original_student_scalar:\nmatchnumber(studentAnswer,['plain','en'])[1]\n\nstudent_scalar:\nmod(original_student_scalar,360)\n\n\nstudent_unit:\nstudentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]\n\ninterpreted_unit:\nif(trim(student_unit)='\u00b0','deg',student_unit)\n\ninterpreted_answer:\nqty(mod(student_scalar,360),'deg')\n\nclose:\nwithintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))\n\ncorrect_scalar:\nmod(scalar(settings['expected_answer']),360)\n\nright:\nwithintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))\n\ngood_unit:\nsame(qty(1,interpreted_unit),qty(1,'deg'))\n\nmark:\nassert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))", "marking_notes": [{"name": "original_student_scalar", "description": "Retuns the scalar part of students answer (which is a quantity) as a number.
", "definition": "matchnumber(studentAnswer,['plain','en'])[1]"}, {"name": "student_scalar", "description": "Normalize angle with mod 360
", "definition": "mod(original_student_scalar,360)\n"}, {"name": "student_unit", "description": "matchnumber(studentAnswer,['plain','en'])[0] is a string \"12.34\"
", "definition": "studentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]"}, {"name": "interpreted_unit", "description": "Allows student to use degree symbol or 'deg' for units.
", "definition": "if(trim(student_unit)='\u00b0','deg',student_unit)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(mod(student_scalar,360),'deg')"}, {"name": "close", "description": "", "definition": "withintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))"}, {"name": "correct_scalar", "description": "Normalize expected_answer with mod 360
", "definition": "mod(scalar(settings['expected_answer']),360)"}, {"name": "right", "description": "", "definition": "withintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))"}, {"name": "good_unit", "description": "", "definition": "same(qty(1,interpreted_unit),qty(1,'deg'))"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "assert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))"}], "settings": [{"name": "expected_answer", "label": "Expected Answer", "help_url": "", "hint": "Expected angle as a quantity.", "input_type": "code", "default_value": "qty(30,'deg')", "evaluate": true}, {"name": "unit_penalty", "label": "Unit penalty", "help_url": "", "hint": "Penalty for not including degree sign or 'deg'.", "input_type": "percent", "default_value": "20"}, {"name": "close_penalty", "label": "Close Penalty", "help_url": "", "hint": "Penalty for close answer.", "input_type": "percent", "default_value": "20"}, {"name": "close_tol", "label": "Close", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked close. ", "input_type": "code", "default_value": "0.5", "evaluate": false}, {"name": "right_tol", "label": "Right ", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked correct. ", "input_type": "code", "default_value": "0.1", "evaluate": false}], "public_availability": "restricted", "published": false, "extensions": ["quantities"]}, {"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "A value with units marked right if within an adjustable % error of the correct value. Marked close if within a wider margin of error.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "Modify the unit portion of the student's answer by
\n1. replacing \"ohms\" with \"ohm\" case insensitive
\n2. replacing '-' with ' '
\n3. replacing '°' with ' deg'
\nto allow answers like 10 ft-lb and 30°
", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "This fixes the student answer for two common errors.
\nIf student_units are wrong - replace with correct units
\nIf student_scalar has the wrong sign - replace with right sign
\nIf student makes both errors, only one gets fixed.
", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "Only marked close if the student actually has the right sign.
", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units. if correct answer is 100 N and close is ±1%,Solve a random oblique triangle for sides and angles.
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "Determine the lengths of the three sides and the measures of the three angles for the case when $A$ = ({A[0]},{A[1]}), $B$ = ({B[0]},{B[1]}), $C$ = ({C[0]},{C[1]}). Length units are {units}.
\nGive numeric answers to engineering accuracy and measure angles in degrees.
\n{geogebra_applet('HCFekBp8',[['A',A],['B',B],['C',C]])}
\n\nAB: {AB} BC: {BC} CA: {CA}
\nalpha: {alpha} beta: {beta} gamma: {gamma}
\nThe lengths of the three sides are:
\n$AB$ = [[0]] $BC$ = [[1]] $CA$ = [[2]]
", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "AB", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "quantity(AB,units)", "right": "0.1", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "BC", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "quantity(BC,units)", "right": "0.1", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "CA", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "quantity(CA,units)", "right": "0.1", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Angles", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The three angles are:
\n$\\alpha$ = [[0]] $\\beta$ = [[1]] $\\gamma$ = [[2]]
", "gaps": [{"type": "angle", "useCustomName": true, "customName": "alpha", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"expected_answer": "qty(round(alpha*100)/100,'deg')", "unit_penalty": "20", "close_penalty": "20", "close_tol": "0.5", "right_tol": "0.1"}}, {"type": "angle", "useCustomName": true, "customName": "beta", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"expected_answer": "qty(round(beta*100)/100,'deg')", "unit_penalty": "20", "close_penalty": "20", "close_tol": "0.5", "right_tol": "0.1"}}, {"type": "angle", "useCustomName": true, "customName": "gamma", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"expected_answer": "qty(round(100*gamma)/100,'deg')", "unit_penalty": "20", "close_penalty": "20", "close_tol": "0.5", "right_tol": "0.1"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Perpendicular distance between a point and line", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "A value with units marked right if within an adjustable % error of the correct value. Marked close if within a wider margin of error.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "Modify the unit portion of the student's answer by
\n1. replacing \"ohms\" with \"ohm\" case insensitive
\n2. replacing '-' with ' '
\n3. replacing '°' with ' deg'
\nto allow answers like 10 ft-lb and 30°
", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "This fixes the student answer for two common errors.
\nIf student_units are wrong - replace with correct units
\nIf student_scalar has the wrong sign - replace with right sign
\nIf student makes both errors, only one gets fixed.
", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "Only marked close if the student actually has the right sign.
", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units. if correct answer is 100 N and close is ±1%,Given a point and a line, determine the distance between them.
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "{show_triangle(applet,debug)}
\nDetermine the perpendicular distance between point $B$ = ({B[0]}, {B[1]}) and a line passing through point $A$ = ({A[0]}, {A[1]}) with a {rise}:{run} slope. Grid units are {units}.
\nd: {siground(d,3)} dperp: {siground(dperp,3) } theta: {siground(degrees(theta),3)}
\n", "advice": "perpendicular distance from B to line
", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "Ungrouped variables", "definition": "arctan(Rise/Run)", "description": "angle line makes with the horizontal
", "templateType": "anything", "can_override": false}, "debug": {"name": "debug", "group": "Ungrouped variables", "definition": "false", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "abs(A-B)", "description": "distance from A to B
", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "input", "definition": "vector(random(-6..6),random(-6..6))", "description": "point on the line
", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "input", "definition": "A + vector(random(-5..5), random(-5..5))", "description": "the point
", "templateType": "anything", "can_override": false}, "units": {"name": "units", "group": "Ungrouped variables", "definition": "random('in','ft','mm','cm','m')", "description": "", "templateType": "anything", "can_override": false}, "applet": {"name": "applet", "group": "input", "definition": "geogebra_applet('umrzknxw',params)", "description": "", "templateType": "anything", "can_override": false}, "params": {"name": "params", "group": "input", "definition": "[A: A, B: B, Rise: Rise, Run: Run, Z: Z]", "description": "", "templateType": "anything", "can_override": false}, "slopes": {"name": "slopes", "group": "input", "definition": "random([[1,2],[1,3],[1,5],[2,3],[3,4],[5,12]])", "description": "pick a rise/run ratio for 'nice' choices
", "templateType": "anything", "can_override": false}, "slope": {"name": "slope", "group": "input", "definition": "random([[slopes[0],slopes[1]], [slopes[1],slopes[0]],[-slopes[0],slopes[1]], [-slopes[1],slopes[0]]])", "description": "permutations of the legal slope
", "templateType": "anything", "can_override": false}, "Rise": {"name": "Rise", "group": "input", "definition": "slope[0]", "description": "The rise
", "templateType": "anything", "can_override": false}, "Run": {"name": "Run", "group": "input", "definition": "slope[1]", "description": "The run
", "templateType": "anything", "can_override": false}, "Z": {"name": "Z", "group": "input", "definition": "round(abs(A-B))+1", "description": "Z sizes the ggb canvas to be large enough to show A and B
", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "A-B + vector(0,0,0)\n", "description": "3d vector from B to A
", "templateType": "anything", "can_override": false}, "F": {"name": "F", "group": "Ungrouped variables", "definition": "vector(cos(alpha),sin(alpha),0)", "description": "3d unit vector for cross product to find angle theta and dperp
\n(M= F d sin theta = r x F ), but |F|=1
", "templateType": "anything", "can_override": true}, "theta": {"name": "theta", "group": "Ungrouped variables", "definition": "degrees(angle(f,r))", "description": "angle between line and segment d
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "0.2 < dperp/d < 0.8 and // not too close to 0 or 90\u00b0\nd > 3 // not too small", "maxRuns": 100}, "ungrouped_variables": ["d", "dperp", "debug", "units", "r", "alpha", "F", "theta"], "variable_groups": [{"name": "input", "variables": ["A", "B", "applet", "params", "slopes", "slope", "Rise", "Run", "Z"]}], "functions": {"applets": {"parameters": [], "type": "ggbapplet", "language": "javascript", "definition": "// Create the worksheet. \n// This function returns an object with a container `element` and a `promise` resolving to a GeoGebra applet.\nvar params = {\n material_id: 'ptkds8nz'\n};\nvar result = Numbas.extensions.geogebra.createGeogebraApplet(params);\n\n// Once the applet has loaded, run some commands to manipulate the worksheet.\nresult.promise.then(function(d) {\n var app = d.app;\n question.applet = d;\n \n function setGGBPoint(name, nname=name) {\n // moves point in GGB to Numbas value\n var pt = Numbas.jme.unwrapValue(question.scope.getVariable(nname));\n app.setFixed(name,false,false);\n app.setCoords(name, pt[0], pt[1]);\n app.setFixed(name,true,true);\n }\n \n function setGGBAngle(gname, nname=gname) {\n // Sets angle in GGB to a Numbas Variable given in degrees.\n var v = Math.PI / 180 * Numbas.jme.unwrapValue(question.scope.getVariable(nname));\n app.setValue(gname,v);\n } \n \n \n setGGBPoint(\"A\");\n setGGBPoint(\"B\");\n setGGBAngle(\"\u03b1\",\"alpha\");\n \n \n});\n\n// This function returns the result of `createGeogebraApplet` as an object \n// with the JME data type 'ggbapplet', which can be substituted into the question's content.\nreturn new Numbas.jme.types.ggbapplet(result)"}, "show_triangle": {"parameters": [["app", "ggbapplet"], ["v", "boolean"]], "type": "anything", "language": "javascript", "definition": "// Take an applet, set its perspective to the given string.\n// See https://wiki.geogebra.org/en/SetPerspective_Command for the format of the perspective string.\napp.promise.then(function(d) {\n d.app.setVisible(\"construction\", v);\n d.app.setVisible(\"theta\", v);\n});\nreturn new Numbas.jme.types.ggbapplet(app);"}}, "preamble": {"js": "question.signals.on('adviceDisplayed',function() {\n \n try{\n //var app = question.applet.app;\n var app = Numbas.exam.currentQuestion.scope.variables.applet.app;\n app.setVisible(\"construction\", true);\n app.setVisible(\"theta\", true); \n }\n catch(err){} \n})\n\n", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Solutions", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find:
\nThe length of the segment $AB$:
\n$d = $ [[0]]
\nThe perpendicular distance between the point and the line:
\n$d_{\\perp} = $ [[1]]
", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "d", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "quantity(abs(d), units)", "right": "0.1", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "dperp", "marks": "20", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "quantity(dperp, units)", "right": "0.1", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Trig: Diagonal of a parallelogram", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "A value with units marked right if within an adjustable % error of the correct value. Marked close if within a wider margin of error.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "Modify the unit portion of the student's answer by
\n1. replacing \"ohms\" with \"ohm\" case insensitive
\n2. replacing '-' with ' '
\n3. replacing '°' with ' deg'
\nto allow answers like 10 ft-lb and 30°
", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "This fixes the student answer for two common errors.
\nIf student_units are wrong - replace with correct units
\nIf student_scalar has the wrong sign - replace with right sign
\nIf student makes both errors, only one gets fixed.
", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "Only marked close if the student actually has the right sign.
", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units. if correct answer is 100 N and close is ±1%,Find an interior angle and length of a diagonal of a random parallelogram.
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "{applet()}
\nThe lengths of the sides of parallelogram are $\\overline{AB} =\\overline{CD} = \\var{qty(AB,units)}$ and $\\overline{AD} =\\overline{BC} = \\var{qty(AD,units)}$, and the known angles are $\\theta = \\var{theta}^\\circ$ and $\\phi = \\var{phi}^\\circ$.
\nDetermine $\\angle{ABC}$ and the length of the diagonal $\\overline{AC}$.
\n", "advice": "From geometry:
\n$\\begin{align} \\angle ABC &= \\theta + (90° - \\phi)\\\\ &= \\var{theta}^{\\circ} + (90^{\\circ} - \\var{phi}^\\circ) \\\\&= \\var{ABC}^{\\circ}\\end{align}$
\nFrom the law of cosines:
\n$\\begin{align} (\\overline{AC})^2&= (\\overline{AB})^2 + (\\overline{AD})^2 - 2(\\overline{AB})(\\overline{AD})\\cos{\\angle ABC}\\\\&= \\var{AB}^2 + \\var{AD}^2 - 2 (\\var{AB}) (\\var{AD}) \\cos{\\var{ABC}}\\\\&= \\var{qty(siground(AC ^2,4),units+'^2')}\\\\ \\\\\\overline{AC} &= \\sqrt{\\var{qty(siground(AC ^2,4),units+'^2')}}\\\\ &= \\var{qty(AC,units)}\\end{align}$
", "rulesets": {}, "variables": {"theta": {"name": "theta", "group": "Ungrouped variables", "definition": "random(20..60#5)", "description": "", "templateType": "anything"}, "phi": {"name": "phi", "group": "Ungrouped variables", "definition": "random(30..75#5)\n", "description": "", "templateType": "anything"}, "AB": {"name": "AB", "group": "Ungrouped variables", "definition": "random(4..10)", "description": "", "templateType": "anything"}, "AD": {"name": "AD", "group": "Ungrouped variables", "definition": "random(4..12)", "description": "", "templateType": "anything"}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "vector(cos(radians(90-theta)), sin(radians(90-theta))) AB", "description": "", "templateType": "anything"}, "D": {"name": "D", "group": "Ungrouped variables", "definition": "vector(cos(radians(-phi)), sin(radians(-phi))) AD", "description": "", "templateType": "anything"}, "C": {"name": "C", "group": "Ungrouped variables", "definition": "B+D", "description": "", "templateType": "anything"}, "units": {"name": "units", "group": "Ungrouped variables", "definition": "random(['in','ft','mm','m'])", "description": "", "templateType": "anything"}, "ABC": {"name": "ABC", "group": "Solution", "definition": "theta + 90 - phi", "description": "angle ABC
", "templateType": "anything"}, "AC": {"name": "AC", "group": "Solution", "definition": "siground(sqrt(C[0]^2 + C[1]^2),4)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "AB <> AD and C[1] > 1 and ABC <> 90", "maxRuns": 100}, "ungrouped_variables": ["theta", "phi", "AB", "AD", "B", "D", "C", "units"], "variable_groups": [{"name": "Solution", "variables": ["ABC", "AC"]}], "functions": {"applet": {"parameters": [], "type": "ggbapplet", "language": "javascript", "definition": "// Create the worksheet. \n// This function returns an object with a container `element` and a `promise` resolving to a GeoGebra applet.\nvar params = {\n material_id: 'nxg7xva7'\n};\n\nvar result = Numbas.extensions.geogebra.createGeogebraApplet(params);\n\n// Once the applet has loaded, run some commands to manipulate the worksheet.\nresult.promise.then(function(d) {\n var app = d.app;\n question.applet = d;\n \n function setGGBPoint(name, nname=name) {\n // moves point in GGB to Numbas value\n var pt = Numbas.jme.unwrapValue(question.scope.getVariable(nname));\n app.setFixed(name,false,false);\n app.setCoords(name, pt[0], pt[1]);\n app.setFixed(name,true,true);\n }\n \n setGGBPoint(\"B\");\n setGGBPoint(\"D\");\n app.setValue(\"show\",false);\n app.setVisible(\"f\",false); // diagonal\n //app.setLabelStyle('\u03b8',2);\n //app.setLabelStyle('\u03a6',2);\n //app.setVisible(\"MP\",true);\n \n});\n\n// This function returns the result of `createGeogebraApplet` as an object \n// with the JME data type 'ggbapplet', which can be substituted into the question's content.\nreturn new Numbas.jme.types.ggbapplet(result);"}}, "preamble": {"js": "question.signals.on('adviceDisplayed',function() {\n try{\n var app = question.applet.app;\n app.setVisible(\"f\",true);\n app.setValue(\"show\",true);\n app.setVisible(\"show\",true);\n app.setLabelVisible(\"show\",false);\n \n }\n catch(err){} \n})\n\n", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\angle ABC = $ [[0]] $\\overline{AC} = $ [[1]]
", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "$\\angle AC$", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(ABC,'deg')", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "AC", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(ac,units)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": false, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "allowAttemptDownload": true, "downloadEncryptionKey": "alanerik"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}], "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 12, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/12/edit"}, "name": "Angle quantity 2020", "short_name": "angle", "description": "Adjusts all angles to 0 < $\\theta$ < 360.
\nAccepts '°' and 'deg' as units.
\nPenalizes if not close enough or no units.
\n90° = -270° = 450°
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings['expected_answer']) ", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "original_student_scalar:\nmatchnumber(studentAnswer,['plain','en'])[1]\n\nstudent_scalar:\nmod(original_student_scalar,360)\n\n\nstudent_unit:\nstudentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]\n\ninterpreted_unit:\nif(trim(student_unit)='\u00b0','deg',student_unit)\n\ninterpreted_answer:\nqty(mod(student_scalar,360),'deg')\n\nclose:\nwithintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))\n\ncorrect_scalar:\nmod(scalar(settings['expected_answer']),360)\n\nright:\nwithintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))\n\ngood_unit:\nsame(qty(1,interpreted_unit),qty(1,'deg'))\n\nmark:\nassert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))", "marking_notes": [{"name": "original_student_scalar", "description": "Retuns the scalar part of students answer (which is a quantity) as a number.
", "definition": "matchnumber(studentAnswer,['plain','en'])[1]"}, {"name": "student_scalar", "description": "Normalize angle with mod 360
", "definition": "mod(original_student_scalar,360)\n"}, {"name": "student_unit", "description": "matchnumber(studentAnswer,['plain','en'])[0] is a string \"12.34\"
", "definition": "studentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]"}, {"name": "interpreted_unit", "description": "Allows student to use degree symbol or 'deg' for units.
", "definition": "if(trim(student_unit)='\u00b0','deg',student_unit)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(mod(student_scalar,360),'deg')"}, {"name": "close", "description": "", "definition": "withintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))"}, {"name": "correct_scalar", "description": "Normalize expected_answer with mod 360
", "definition": "mod(scalar(settings['expected_answer']),360)"}, {"name": "right", "description": "", "definition": "withintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))"}, {"name": "good_unit", "description": "", "definition": "same(qty(1,interpreted_unit),qty(1,'deg'))"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "assert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))"}], "settings": [{"name": "expected_answer", "label": "Expected Answer", "help_url": "", "hint": "Expected angle as a quantity.", "input_type": "code", "default_value": "qty(30,'deg')", "evaluate": true}, {"name": "unit_penalty", "label": "Unit penalty", "help_url": "", "hint": "Penalty for not including degree sign or 'deg'.", "input_type": "percent", "default_value": "20"}, {"name": "close_penalty", "label": "Close Penalty", "help_url": "", "hint": "Penalty for close answer.", "input_type": "percent", "default_value": "20"}, {"name": "close_tol", "label": "Close", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked close. ", "input_type": "code", "default_value": "0.5", "evaluate": false}, {"name": "right_tol", "label": "Right ", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked correct. ", "input_type": "code", "default_value": "0.1", "evaluate": false}], "public_availability": "restricted", "published": false, "extensions": ["quantities"]}, {"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "A value with units marked right if within an adjustable % error of the correct value. Marked close if within a wider margin of error.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "Modify the unit portion of the student's answer by
\n1. replacing \"ohms\" with \"ohm\" case insensitive
\n2. replacing '-' with ' '
\n3. replacing '°' with ' deg'
\nto allow answers like 10 ft-lb and 30°
", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "This fixes the student answer for two common errors.
\nIf student_units are wrong - replace with correct units
\nIf student_scalar has the wrong sign - replace with right sign
\nIf student makes both errors, only one gets fixed.
", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "Only marked close if the student actually has the right sign.
", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units. if correct answer is 100 N and close is ±1%,