// Numbas version: exam_results_page_options {"name": "Maths 1B - Week 6 Homework (Applications 2)", "metadata": {"description": "

Applications of Derivatives 2

", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], []], "questions": [{"name": "Maria's copy of Maclaurin series (three terms)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}], "tags": [], "metadata": {"description": "

Find the first 3 terms in the MacLaurin series for $f(x)=(a+bx)^{1/n}$ i.e. up to and including terms in $x^2$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

You are asked to find the first 3 terms in the MacLaurin series for $f(x)=(\\simplify[all]{{a}+{b}*x})^{1/\\var{n}}$ i.e. up to terms in $x^2$ and $x$ is near $0$.

", "advice": "

The first three terms in the MacLaurin series are given by $a+bx+cx^2$ where $\\displaystyle a=f(0),\\;\\;b=f'(0),\\;\\;c=\\frac{f''(0)}{2}$
For this example,
\\[\\begin{eqnarray*} f'(x)&=&\\simplify[all,fractionNumbers]{{b}/{n}*({a}+{b}x)^(-{n-1}/{n})}\\\\ f''(x)&=&\\simplify[all,fractionNumbers]{-{b^2*(n-1)}/{n^2}*({a}+{b}x)^(-{2*n-1}/{n})} \\end{eqnarray*} \\]
and so we get:
\\[\\begin{eqnarray*} a&=&f(0)=\\simplify[all]{{a}^(1/{n})={tm0}}\\\\ b&=&f'(0)=\\simplify[all,fractionNumbers]{{tm1}/{a*n}}\\\\ c&=&\\frac{f''(0)}{2}=\\simplify[all,fractionNumbers]{{tm2}/{2*a^2*n^2}} \\end{eqnarray*}\\]
Hence the first three terms of the MacLaurin series are:
\\[\\simplify[all,fractionNumbers,!collectNumbers]{{tm0}+{tm1}/{a*n}*x+{tm2}/{2*a^2*n^2}*x^2} \\]

", "rulesets": {}, "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*switch(a=1,random(2..9),a=4,random(3,5,7,9),a=8,random(1,3,5,7,9),a=9,random(1,2,4,5,7,8),a=16,random(1,3,5,7,9),a=32,random(1,3,5,7,9),a=25,random(1,2,4,6,7,9),a=27,random(1,2,4,5,7,8),a=36,random(1,5,7,9),random(1,2,3,4,5,8,9))", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "tm0": {"name": "tm0", "group": "Ungrouped variables", "definition": "a^(1/n)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1,4,8,9,16,27,32,25,36,49)", "description": "", "templateType": "anything"}, "tm2": {"name": "tm2", "group": "Ungrouped variables", "definition": "-(n-1)*tm1*b", "description": "", "templateType": "anything"}, "tm1": {"name": "tm1", "group": "Ungrouped variables", "definition": "tm0*b", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "if(a=4 or a=9 or a=25 or a=36 or a=49,2,if(a=8 or a=27,3,if(a=32,5,if(a=16,random(2,4),random(2..5)))))", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "tm0", "tm2", "b", "tm1", "s1", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 4, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

First 3 terms = ?

\n

Input the first three terms in the Taylor series in the form $a+b(x-\\var{c})+c(x-\\var{c})^2$ for suitable coefficients $a,\\;b$ and $c$.

\n

Input coefficients as fractions, not as decimals. Also do not use factorials in your answer. For example, input 6 rather than 3!.

", "answer": "{tm0}+{tm1}/{a*n}*x+{tm2}/{2*a^2*n^2}*x^2", "answerSimplification": "all,fractionNumbers,!collectNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 1e-06, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": [{"name": "x", "value": ""}]}]}, {"name": "Maria's copy of Taylor series (three terms)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}], "tags": [], "metadata": {"description": "

Find the first 3 terms in the Taylor series at $x=c$ for $f(x)=(a+bx)^{1/n}$ i.e. up to and including terms in $x^2$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

You are asked to find the first 3 terms in the Taylor series at $x=\\var{c}$ for $f(x)=(\\simplify[all]{{a-b*c}+{b}*x})^{1/\\var{n}}$ i.e. up to terms in $x^2$.

", "advice": "

The first three terms in the Taylor series are given by $\\simplify[all]{a+b(x-{c})+c(x-{c})^2}$ where $\\displaystyle a=f(\\var{c}),\\;\\;b=f'(\\var{c}),\\;\\;c=\\frac{f''(\\var{c})}{2}$
For this example,
\\[\\begin{eqnarray*} f'(x)&=&\\simplify[all,fractionNumbers]{{b}/{n}*({a-b*c}+{b}x)^(-{n-1}/{n})}\\\\ f''(x)&=&\\simplify[all,fractionNumbers]{-{b^2*(n-1)}/{n^2}*({a-b*c}+{b}x)^(-{2*n-1}/{n})} \\end{eqnarray*} \\]
and so we get:
\\[\\begin{eqnarray*} a&=&f(\\var{c})=\\simplify[all]{{a}^(1/{n})={tm0}}\\\\ b&=&f'(\\var{c})=\\simplify[all,fractionNumbers]{{tm1}/{a*n}}\\\\ c&=&\\frac{f''(\\var{c})}{2}=\\simplify[all,fractionNumbers]{{tm2}/{2*a^2*n^2}} \\end{eqnarray*}\\]
Hence the first three terms of the Taylor series are:
\\[\\simplify[all,fractionNumbers,!collectNumbers]{{tm0}+{tm1}/{a*n}*(x-{c})+{tm2}/{2*a^2*n^2}*(x-{c})^2} \\]

", "rulesets": {}, "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1,4,8,9,16,27,32,25,36,49)", "description": "", "templateType": "anything"}, "tm1": {"name": "tm1", "group": "Ungrouped variables", "definition": "tm0*b", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*switch(a=1,random(2..9),a=4,random(3,5,7,9),a=8,random(1,3,5,7,9),a=9,random(1,2,4,5,7,8),a=16,random(1,3,5,7,9),a=32,random(1,3,5,7,9),a=25,random(1,2,4,6,7,9),a=27,random(1,2,4,5,7,8),a=36,random(1,5,7,9),random(1,2,3,4,5,8,9))", "description": "", "templateType": "anything"}, "tm0": {"name": "tm0", "group": "Ungrouped variables", "definition": "a^(1/n)", "description": "", "templateType": "anything"}, "tm2": {"name": "tm2", "group": "Ungrouped variables", "definition": "-(n-1)*tm1*b", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "if(a=4 or a=9 or a=25 or a=36 or a=49,2,if(a=8 or a=27,3,if(a=32,5,if(a=16,random(2,4),random(2..5)))))", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "tm0", "tm2", "b", "tm1", "s1", "c", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 4, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Input the first three terms in the Taylor series in the form $a+b(x-\\var{c})+c(x-\\var{c})^2$ for suitable coefficients $a,\\;b$ and $c$.

\n


Input coefficients as fractions, not as decimals. Also do not use factorials in your answer. For example, input 6 rather than 3!.

", "answer": "{tm0}+{tm1}/{a*n}*(x-{c})+{tm2}/{2*a^2*n^2}*(x-{c})^2", "answerSimplification": "all,fractionNumbers,!collectNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 1e-06, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "notallowed": {"strings": ["!", "."], "showStrings": false, "partialCredit": 0, "message": "

Do not input factorials or decimals in the Taylor series.

"}, "valuegenerators": [{"name": "x", "value": ""}]}]}, {"name": "Maria's copy of Limits: L'Hospital's rule: Indeterminate form infinity/infinity", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}], "advice": "

As {choice2[0]}, it appears {choice2[2]} approaches {choice2[1]}, but it isn't clear what this means. This is known as an indeterminate form of type {choice2[1]}. L'Hospital's rule says that if we have such an indeterminate form we can differentiate the numerator and denominator separately and take the limit of the quotient. That is, if $f$ and $g$ are differentiable on an open interval containing $a$, $g'(x)\\ne 0$ on that interval (except possibly at $x=a$), $\\lim_{x\\rightarrow a}f(x)=\\infty$, $\\lim_{x\\rightarrow a}g(x)=\\infty$ and $\\lim_{x\\rightarrow a}\\frac{f'(x)}{g'(x)}$ exists (or equals $\\pm\\infty)$ then:

\n

\\[\\lim_{x\\rightarrow a} \\frac{f(x)}{g(x)}=\\lim_{x\\rightarrow a}\\frac{f'(x)}{g'(x)}.\\]

\n

(If this is still an indeterminate form we can (of course) repeat the procedure)

\n

\n

So by applying L'Hospital's rule we now need to determine what {choice2[3]} approaches as {choice2[0]}. But this is again an indeterminate form so we repeatedly apply L'Hospital's rule until it is not an indeterminate form and we arrive at needing to determine what {choice2[4]} approaches as {choice2[0]}. Now that this is no longer an indeterminate form, it should be clear that the limit is $\\var{choice2[-1]}$.

\n

", "tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pL", "pa", "pb", "pc", "pd", "pe", "nL", "na", "nb", "nc", "nd", "ne", "log_power", "power_log", "exp_power", "power_exp", "exp_log", "log_exp", "log_root", "root_log", "choice1", "choice2"], "parts": [{"type": "gapfill", "showCorrectAnswer": true, "variableReplacements": [], "gaps": [{"correctAnswerFraction": false, "type": "numberentry", "minValue": "choice2[-1]", "allowFractions": false, "mustBeReducedPC": 0, "scripts": {}, "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "maxValue": "choice2[-1]", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "marks": 1, "correctAnswerStyle": "plain"}], "variableReplacementStrategy": "originalfirst", "scripts": {}, "showFeedbackIcon": true, "marks": 0, "prompt": "

As {choice2[0]}, {choice2[2]} approaches [[0]] 

\n

Note: infinity is simply entered by typing infinity

\n

"}], "variables": {"power_exp": {"templateType": "anything", "definition": "[\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pd}x^{pb}+{nd})/({pc}e^({pa}x+{nb})+{nc})}\\$','\\$\\\\simplify{({pd}*{pb}x^{pb-1})/({pc}*{pa}*e^({pa}x+{nb}))}\\$','\\$\\\\simplify[!othernumbers]{({pd}*{pb}!)/({pc}*{pa}^{pb}*e^({pa}x+{nb}))}\\$',0], \n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pd}x^{pb}+{nd})/({pc}e^({pa}x+{nb})+{nc})}\\$','\\$\\\\simplify{({-pd}*{pb}x^{pb-1})/({pc}*{pa}*e^({pa}x+{nb}))}\\$','\\$\\\\simplify[!othernumbers]{({-pd}*{pb}!)/({pc}*{pa}^{pb}*e^({pa}x+{nb}))}\\$',0], \n\n\n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({-pd}x^{pb}+{nd})/({pc}e^({-pa}x+{nb})+{nc})}\\$','\\$\\\\simplify{({-pd}*{pb}x^{pb-1})/({pc}*{-pa}e^({-pa}x+{nb}))}\\$','\\$\\\\simplify[!othernumbers]{({-pd}*{pb}!)/({pc}*{-pa}^{pb}*e^({-pa}x+{nb}))}\\$',0],\n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({pd}x^{pb}+{nd})/({pc}e^({-pa}x+{nb})+{nc})}\\$','\\$\\\\simplify{({pd}*{pb}x^{pb-1})/({pc}*{-pa}e^({-pa}x+{nb}))}\\$','\\$\\\\simplify[!othernumbers]{({pd}*{pb}!)/({pc}*{-pa}^{pb}*e^({-pa}x+{nb}))}\\$',0]\n]\n", "name": "power_exp", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "exp_power": {"templateType": "anything", "definition": "[\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pc}e^({pa}x+{nb})+{nc})/({pd}x^{pb}+{nd})}\\$','\\$\\\\simplify{({pc}*{pa}*e^({pa}x+{nb}))/({pd}*{pb}x^{pb-1})}\\$','\\$\\\\simplify[!othernumbers]{({pc}*{pa}^{pb}*e^({pa}x+{nb}))/({pd}*{pb}!)}\\$',infinity], \n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pc}e^({pa}x+{nb})+{nc})/({pd}x^{pb}+{nd})}\\$','\\$\\\\simplify{({-pc}*{pa}*e^({pa}x+{nb}))/({pd}*{pb}x^{pb-1})}\\$','\\$\\\\simplify[!othernumbers]{({-pc}*{pa}^{pb}*e^({pa}x+{nb}))/({pd}*{pb}!)}\\$',-infinity], \n\n\n\n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$\\\\frac{\\\\infty}{-\\\\infty}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({pc}e^({-pa}x+{nb})+{nc})/({-pd}x^{pb}+{nd})}\\$','\\$\\\\simplify{({pc}*{-pa}e^({-pa}x+{nb}))/({-pd}*{pb}x^{pb-1})}\\$','\\$\\\\simplify[!othernumbers]{({pc}*{-pa}^{pb}*e^({-pa}x+{nb}))/({-pd}*{pb}!)}\\$',if(mod(pb,2)=0,-infinity,infinity)],\n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\frac{\\\\infty}{-\\\\infty}\\$'), '\\$\\\\simplify{({-pc}e^({-pa}x+{nb})+{nc})/({-pd}x^{pb}+{nd})}\\$','\\$\\\\simplify{({pc}*{pa}e^({-pa}x+{nb}))/({-pd}*{pb}x^{pb-1})}\\$','\\$\\\\simplify[!othernumbers]{({pc}*{pa}^{pb}*e^({-pa}x+{nb}))/({-pd}*{pb}!)}\\$',if(mod(pb,2)=0,infinity,-infinity)]\n]\n", "name": "exp_power", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "log_exp": {"templateType": "anything", "definition": "[\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pd}ln({pb}x+{nb}))/({pc}e^({pa}x+{nb})+{nc})}\\$','\\$\\\\simplify{({pd*pb}/({pb}x+{nb}))/({pc}*{pa}*e^({pa}x+{nb}))={pd*pb}/({pc}*{pa}*e^({pa}x+{nb})*({pb}x+{nb}))}\\$',0], \n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pd}ln({pb}x+{nb}))/({pc}e^({pa}x+{nb})+{nc})}\\$','\\$\\\\simplify{({-pd*pb}/({pb}x+{nb}))/({pc}*{pa}*e^({pa}x+{nb}))={-pd*pb}/({pc}*{pa}*e^({pa}x+{nb})*({pb}x+{nb}))}\\$',0], \n\n['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$', '\\$\\\\simplify{({pd}ln({-pb}x+{nb}))/({pc}e^({-pa}x+{nb})+{nc})}\\$','\\$\\\\simplify{({pd*-pb}/({-pb}x+{nb}))/({pc}*{-pa}*e^({-pa}x+{nb}))={pd*-pb}/({pc}*{-pa}*e^({-pa}x+{nb})*({-pb}x+{nb}))}\\$',0],\n['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$', '\\$\\\\simplify{({-pd}ln({-pb}x+{nb}))/({pc}e^({-pa}x+{nb})+{nc})}\\$','\\$\\\\simplify{({pd*pb}/({-pb}x+{nb}))/({pc}*{-pa}*e^({-pa}x+{nb}))={pd*pb}/({pc}*{-pa}*e^({-pa}x+{nb})*({-pb}x+{nb}))}\\$',0]\n]", "name": "log_exp", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "pc": {"templateType": "anything", "definition": "pl[2]", "name": "pc", "group": "Ungrouped variables", "description": ""}, "choice2": {"templateType": "anything", "definition": "switch(choice1=0,random(log_power),choice1=1,random(power_log),choice1=2,random(exp_power),choice1=3,random(power_exp),choice1=4,random(exp_log),choice1=5,random(log_exp),choice1=6,random(log_root),choice1=7,random(root_log),'')", "name": "choice2", "group": "Ungrouped variables", "description": ""}, "nc": {"templateType": "anything", "definition": "nl[2]", "name": "nc", "group": "Ungrouped variables", "description": ""}, "pb": {"templateType": "anything", "definition": "pl[1]", "name": "pb", "group": "Ungrouped variables", "description": ""}, "power_log": {"templateType": "anything", "definition": "[\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pd}x^{pb}+{nd})/({pc}ln({pa}x+{nb}))}\\$','\\$\\\\simplify{({pd*pb}x^{pb-1})/({pc*pa}/({pa}x+{nb}))=(({pa}x+{nb})*({pd*pb}x^{pb-1}))/({pc*pa})}\\$',infinity], \n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pd}x^{pb}+{nd})/({pc}ln({pa}x+{nb}))}\\$','\\$\\\\simplify{({-pd*pb}x^{pb-1})/({pc*pa}/({pa}x+{nb}))=(({pa}x+{nb})*({-pd*pb}x^{pb-1}))/({pc*pa})}\\$',-infinity], \n\n\n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({-pd}x^{pb}+{nd})/({pc}ln({-pa}x+{nb}))}\\$','\\$\\\\simplify{({-pd*pb}x^{pb-1})/({-pc*pa}/({-pa}x+{nb}))=(({-pa}x+{nb})*({-pd*pb}x^{pb-1}))/({-pc*pa})}\\$',if(mod(pb,2)=0,-infinity,infinity)],\n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({pd}x^{pb}+{nd})/({pc}ln({-pa}x+{nb}))}\\$','\\$\\\\simplify{({pd*pb}x^{pb-1})/({-pc*pa}/({-pa}x+{nb}))=(({-pa}x+{nb})*({pd*pb}x^{pb-1}))/({-pc*pa})}\\$',if(mod(pb,2)=0,infinity,-infinity)]\n\n\n]\n", "name": "power_log", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "nb": {"templateType": "anything", "definition": "nl[1]", "name": "nb", "group": "Ungrouped variables", "description": ""}, "pL": {"templateType": "anything", "definition": "shuffle(1..12)[0..5]", "name": "pL", "group": "Ungrouped variables", "description": ""}, "na": {"templateType": "anything", "definition": "nl[0]", "name": "na", "group": "Ungrouped variables", "description": ""}, "exp_log": {"templateType": "anything", "definition": "[\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pd}e^({pa}x+{nb})+{nc})/({pc}ln({pb}x+{nb}))}\\$','\\$\\\\simplify{({pd}*{pa}*e^({pa}x+{nb}))/({pc*pb}/({pb}x+{nb}))=({pd}*{pa}*e^({pa}x+{nb})*({pb}x+{nb}))/{pc*pb}}\\$',infinity], \n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pd}e^({pa}x+{nb})+{nc})/({pc}ln({pb}x+{nb}))}\\$','\\$\\\\simplify{({-pd}*{pa}*e^({pa}x+{nb}))/({pc*pb}/({pb}x+{nb}))=({-pd}*{pa}*e^({pa}x+{nb})*({pb}x+{nb}))/{pc*pb}}\\$',-infinity], \n\n\n['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$', '\\$\\\\simplify{({pd}e^({-pa}x+{nb})+{nc})/({pc}ln({-pb}x+{nb}))}\\$','\\$\\\\simplify{({pd}*{-pa}*e^({-pa}x+{nb}))/({pc*-pb}/({-pb}x+{nb}))=({pd}*{-pa}*e^({-pa}x+{nb})*({-pb}x+{nb}))/{pc*-pb}}\\$',infinity],\n ['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$', '\\$\\\\simplify{({-pd}e^({-pa}x+{nb})+{nc})/({pc}ln({-pb}x+{nb}))}\\$','\\$\\\\simplify{({-pd}*{-pa}*e^({-pa}x+{nb}))/({pc*-pb}/({-pb}x+{nb}))=({pd}*{pa}*e^({-pa}x+{nb})*({-pb}x+{nb}))/{pc*-pb}}\\$',-infinity]\n]", "name": "exp_log", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "pe": {"templateType": "anything", "definition": "pl[4]", "name": "pe", "group": "Ungrouped variables", "description": ""}, "nL": {"templateType": "anything", "definition": "shuffle(-12..12 except 0)[0..5]", "name": "nL", "group": "Ungrouped variables", "description": ""}, "choice1": {"templateType": "anything", "definition": "random(0..7)", "name": "choice1", "group": "Ungrouped variables", "description": ""}, "root_log": {"templateType": "anything", "definition": "[\n\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{(root({pa}x+{nb},{pb}))/({pc}ln({pa}x+{nb}))}\\$','\\$\\\\simplify{({pa}/{pb}*(({pa}x+{nb})^({1-pb}/{pb})))/({pc*pa}/({pa}x+{nb}))=(({pa}x+{nb})^(1/{pb}))/({pc*pb})}\\$',infinity], \n['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{(root({-pa}x+{nb},{pb}))/({pc}ln({-pa}x+{nb}))}\\$','\\$\\\\simplify{({-pa}/{pb}*(({-pa}x+{nb})^({1-pb}/{pb})))/({-pc*pa}/({-pa}x+{nb}))=(({-pa}x+{nb})^(1/{pb}))/({pc*pb})}\\$',infinity], \n \n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{(root({pa}x+{nb},{pb}))/({-pc}ln({pa}x+{nb}))}\\$','\\$\\\\simplify{({pa}/{pb}*(({pa}x+{nb})^({1-pb}/{pb})))/({-pc*pa}/({pa}x+{nb}))=(({pa}x+{nb})^(1/{pb}))/({-pc*pb})}\\$',-infinity], \n['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{(root({-pa}x+{nb},{pb}))/({-pc}ln({-pa}x+{nb}))}\\$','\\$\\\\simplify{({-pa}/{pb}*(({-pa}x+{nb})^({1-pb}/{pb})))/({pc*pa}/({-pa}x+{nb}))=(({-pa}x+{nb})^(1/{pb}))/({-pc*pb})}\\$',-infinity]\n\n]", "name": "root_log", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "nd": {"templateType": "anything", "definition": "nl[3]", "name": "nd", "group": "Ungrouped variables", "description": ""}, "log_root": {"templateType": "anything", "definition": "[\n\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pc}ln({pa}x+{nb}))/(root({pa}x+{nb},{pb}))}\\$','\\$\\\\simplify{({pc*pa}/({pa}x+{nb}))/({pa}/{pb}*(({pa}x+{nb})^({1-pb}/{pb})))=({pc*pb})/(({pa}x+{nb})^(1/{pb}))}\\$',0], \n['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pc}ln({-pa}x+{nb}))/(root({-pa}x+{nb},{pb}))}\\$','\\$\\\\simplify{({-pc*pa}/({-pa}x+{nb}))/({-pa}/{pb}*(({-pa}x+{nb})^({1-pb}/{pb})))=({pc*pb})/(({-pa}x+{nb})^(1/{pb}))}\\$',0], \n \n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pc}ln({pa}x+{nb}))/(root({pa}x+{nb},{pb}))}\\$','\\$\\\\simplify{({-pc*pa}/({pa}x+{nb}))/({pa}/{pb}*(({pa}x+{nb})^({1-pb}/{pb})))=({-pc*pb})/(({pa}x+{nb})^(1/{pb}))}\\$',0], \n['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pc}ln({-pa}x+{nb}))/(root({-pa}x+{nb},{pb}))}\\$','\\$\\\\simplify{({pc*pa}/({-pa}x+{nb}))/({-pa}/{pb}*(({-pa}x+{nb})^({1-pb}/{pb})))=({-pc*pb})/(({-pa}x+{nb})^(1/{pb}))}\\$',0]\n\n]", "name": "log_root", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "pd": {"templateType": "anything", "definition": "pl[3]", "name": "pd", "group": "Ungrouped variables", "description": ""}, "ne": {"templateType": "anything", "definition": "nl[4]", "name": "ne", "group": "Ungrouped variables", "description": ""}, "pa": {"templateType": "anything", "definition": "pl[0]", "name": "pa", "group": "Ungrouped variables", "description": ""}, "log_power": {"templateType": "anything", "definition": "[\n\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pc}ln({pa}x+{nb}))/({pd}x^{pb}+{nd})}\\$','\\$\\\\simplify{({pc*pa}/({pa}x+{nb}))/({pd*pb}x^{pb-1})=({pc*pa})/(({pa}x+{nb})*({pd*pb}x^{pb-1}))}\\$',0], \n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$\\\\frac{\\\\infty}{-\\\\infty}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({pc}ln({-pa}x+{nb}))/({-pd}x^{pb}+{nd})}\\$','\\$\\\\simplify{({-pc*pa}/({-pa}x+{nb}))/({-pd*pb}x^{pb-1})=({-pc*pa})/(({-pa}x+{nb})*({-pd*pb}x^{pb-1}))}\\$',0]\n, \n ['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pc}ln({pa}x+{nb}))/({pd}x^{pb}+{nd})}\\$','\\$\\\\simplify{({-pc*pa}/({pa}x+{nb}))/({pd*pb}x^{pb-1})=({-pc*pa})/(({pa}x+{nb})*({pd*pb}x^{pb-1}))}\\$',0], \n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({-pc}ln({-pa}x+{nb}))/({-pd}x^{pb}+{nd})}\\$','\\$\\\\simplify{({pc*pa}/({-pa}x+{nb}))/({-pd*pb}x^{pb-1})=({pc*pa})/(({-pa}x+{nb})*({-pd*pb}x^{pb-1}))}\\$',0]\n]", "name": "log_power", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Just what the title says, I guess.

"}, "functions": {}, "variable_groups": [], "preamble": {"css": "", "js": ""}, "rulesets": {}, "statement": "

This question is about limits of indeterminate forms.

", "type": "question"}, {"name": "Maria's copy of Limits: L'Hospital's rule: Indeterminate form 0/0", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}], "functions": {}, "parts": [{"scripts": {}, "type": "gapfill", "gaps": [{"checkingtype": "absdiff", "type": "jme", "showCorrectAnswer": false, "vsetrangepoints": 5, "showFeedbackIcon": true, "expectedvariablenames": [], "variableReplacements": [], "answer": "{{choice2}[-2]}", "variableReplacementStrategy": "originalfirst", "scripts": {}, "marks": 1, "showpreview": true, "checkvariablenames": false, "checkingaccuracy": "0.0000000001", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "prompt": "

As {choice2[0]}, {choice2[2]} approaches [[0]] 

\n

Note: infinity is simply entered by typing infinity

", "showFeedbackIcon": true, "marks": 0, "variableReplacements": [], "variableReplacementStrategy": "originalfirst"}], "tags": [], "advice": "

As {choice2[0]}, it appears {choice2[2]} approaches {choice2[1]}, but it isn't clear what this means. This is known as an indeterminate form of type {choice2[1]}. L'Hospital's rule says that if we have such an indeterminate form we can differentiate the numerator and denominator separately and take the limit of the quotient. That is, if $f$ and $g$ are differentiable on an open interval containing $a$, $g'(x)\\ne 0$ on that interval (except possibly at $x=a$), $\\lim_{x\\rightarrow a}f(x)=0$, $\\lim_{x\\rightarrow a}g(x)=0$ and $\\lim_{x\\rightarrow a}\\frac{f'(x)}{g'(x)}$ exists (or equals $\\pm\\infty)$ then:

\n

\\[\\lim_{x\\rightarrow a} \\frac{f(x)}{g(x)}=\\lim_{x\\rightarrow a}\\frac{f'(x)}{g'(x)}.\\]

\n

(If this is still an indeterminate form we can (of course) repeat the procedure)

\n

\n

So by applying L'Hospital's rule we now need to determine what {choice2[3]} approaches as {choice2[0]}. But this is again an indeterminate form so we repeatedly apply L'Hospital's rule until it is not an indeterminate form and we arrive at needing to determine what {choice2[4]} approaches as {choice2[0]}. Now that this is no longer an indeterminate form, it should be clear that the limit is {choice2[-1]}.

\n

", "statement": "

This question is about limits of indeterminate forms.

", "variable_groups": [], "preamble": {"css": "", "js": ""}, "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Just what the title says, I guess.

"}, "variables": {"pc": {"name": "pc", "definition": "pl[2]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "na": {"name": "na", "definition": "nl[0]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "nb": {"name": "nb", "definition": "nl[1]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "pe": {"name": "pe", "definition": "pl[4]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "poly_sin": {"name": "poly_sin", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{((x-{na})*(x-{nb}))/({nc}sin(x-{na}))}\\$','\\$\\\\simplify{(2x-{na+nb})/({nc}cos(x-{na}))}\\$',(na-nb)/nc,'\\$\\\\simplify[fractionNumbers]{{(na-nb)/nc}}\\$'], \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x^2-{na+nb}x+{na*nb})/({nc}sin(x-{na}))}\\$','\\$\\\\simplify{(2x-{na+nb})/({nc}cos(x-{na}))}\\$',(na-nb)/nc,'\\$\\\\simplify[fractionNumbers]{{(na-nb)/nc}}\\$'],\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x-{na})^2/({nc}sin(x-{na}))}\\$','\\$\\\\simplify{(2(x-{na}))/({nc}cos(x-{na}))}\\$',0,'\\$0\\$'],\n\n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x^2-{nb}x)/({nc}sin(x))}\\$','\\$\\\\simplify{(2x-{nb})/({nc}cos(x))}\\$',-nb/nc,'\\$\\\\simplify[fractionNumbers]{{-nb/nc}}\\$'], \n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{x^2/({nc}sin(x))}\\$','\\$\\\\simplify{(2x)/({nc}cos(x))}\\$',0,'\\$ 0\\$'],\n \n['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x-{na})^{pa}/({nc}sin(x-{na}))}\\$','\\$\\\\simplify{({pa}(x-{na})^{pa-1})/({nc}cos(x-{na}))}\\$',0,'\\$ 0\\$']\n\n]", "templateType": "anything", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

", "group": "Ungrouped variables"}, "pd": {"name": "pd", "definition": "pl[3]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "alt1": {"name": "alt1", "definition": "if(mod(pa,4)=0 or mod(pa,4)=1,1,-1)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "log_cos": {"name": "log_cos", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}cos(x-{na})-{pa})}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*({-pa}sin(x-{na})))}\\$',-nb*infinity,'\\$\\\\simplify{{-nb*infinity}}\\$'], \n['\\$x\\\\rightarrow\\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}cos(x-{na})-{pa})}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*({-pa}sin(x-{na})))}\\$',nb*infinity,'\\$\\\\simplify{{nb*infinity}}\\$'], \n\n['\\$x\\\\rightarrow 0^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x+1))/({pa}cos(x)-{pa})}\\$','\\$\\\\simplify{{nb}/((x+1)*{-pa}sin(x))}\\$',-nb*infinity,'\\$\\\\simplify{{-nb*infinity}}\\$'], \n['\\$x\\\\rightarrow 0^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x+1))/({pa}cos(x)-{pa})}\\$','\\$\\\\simplify{{nb}/((x+1)*{-pa}sin(x))}\\$',nb*infinity,'\\$\\\\simplify{{nb*infinity}}\\$'], \n\n \n['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x/{na}))/({pa}cos(x-{na})-{pa})}\\$','\\$\\\\simplify{({nb})/(x*({-pa}sin(x-{na})))}\\$',-nb/(na)*infinity,'\\$\\\\simplify{{-nb/(na)*infinity}}\\$'], \n['\\$x\\\\rightarrow\\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x/{na}))/({pa}cos(x-{na})-{pa})}\\$','\\$\\\\simplify{({nb})/(x*({-pa}sin(x-{na})))}\\$',nb/(na)*infinity,'\\$\\\\simplify{{nb/(na)*infinity}}\\$'],\n \n['\\$x\\\\rightarrow 1\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x))/({pa}cos(pi/2*x))}\\$','\\$\\\\simplify[fractionNumbers,simplifyFractions]{({2*nb})/((x)*({-pa}*pi*sin(pi/2*x)))}\\$',2*nb/(-pa*pi),'\\$\\\\simplify[fractionNumbers,simplifyFractions,unitFactor]{{-2*nb}/({pa}*{pi})}\\$'], \n \n['\\$x\\\\rightarrow \\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}cos((x-{na})^2)-{pa})}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*{-pa}*2(x-{na})*sin((x-{na})^2))}\\$',-nb*infinity,'\\$\\\\simplify{{-nb*infinity}}\\$'],\n['\\$x\\\\rightarrow \\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}cos((x-{na})^2)-{pa})}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*{-pa}*2(x-{na})*sin((x-{na})^2))}\\$',nb*infinity,'\\$\\\\simplify{{nb*infinity}}\\$']\n]", "templateType": "anything", "description": "

{{-2*nb/gcd(-2*nb,pa)}/({pa/gcd(-2*nb,pa)}*pi)}

\n

\n

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

", "group": "Ungrouped variables"}, "pa": {"name": "pa", "definition": "pl[0]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "poly_cos": {"name": "poly_cos", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{((x-{na})*(x-{nb}))/({nc}cos(x-{na})-{nc})}\\$','\\$\\\\simplify{(2x-{na+nb})/({-nc}sin(x-{na}))}\\$',(na-nb)/(-nc)*infinity,'\\$\\\\simplify{{(na-nb)/(-nc)*infinity}}\\$'],\n['\\$x\\\\rightarrow\\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{((x-{na})*(x-{nb}))/({nc}cos(x-{na})-{nc})}\\$','\\$\\\\simplify{(2x-{na+nb})/({-nc}sin(x-{na}))}\\$',(na-nb)/(nc)*infinity,'\\$\\\\simplify{{(na-nb)/(nc)*infinity}}\\$'], \n['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x^2-{na+nb}x+{na*nb})/({nc}cos(x-{na})-{nc})}\\$','\\$\\\\simplify{(2x-{na+nb})/({-nc}sin(x-{na}))}\\$',(na-nb)/(-nc)*infinity,'\\$\\\\simplify{{(na-nb)/(-nc)*infinity}}\\$'],\n['\\$x\\\\rightarrow\\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x^2-{na+nb}x+{na*nb})/({nc}cos(x-{na})-{nc})}\\$','\\$\\\\simplify{(2x-{na+nb})/({-nc}sin(x-{na}))}\\$',(na-nb)/(nc)*infinity,'\\$\\\\simplify{{(na-nb)/(nc)*infinity}}\\$'], \n \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x-{na})^2/({nc}cos(x-{na})-{nc})}\\$','\\$\\\\simplify{(2(x-{na}))/({-nc}sin(x-{na}))}\\$','\\$\\\\simplify{(2)/({-nc}cos(x-{na}))}\\$',-2/nc,'\\$\\\\simplify[fractionNumbers]{{-2/nc}}\\$'],\n\n['\\$x\\\\rightarrow 0^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x^2-{nb}x)/({nc}cos(x)-{nc})}\\$','\\$\\\\simplify{(2x-{nb})/({-nc}sin(x))}\\$',(nb/nc)*infinity,'\\$\\\\simplify{{(nb/nc)*infinity}}\\$'], \n['\\$x\\\\rightarrow 0^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x^2-{nb}x)/({nc}cos(x)-{nc})}\\$','\\$\\\\simplify{(2x-{nb})/({-nc}sin(x))}\\$',(-nb/nc)*infinity,'\\$\\\\simplify{{(-nb/nc)*infinity}}\\$'], \n\n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x^2)/({nc}cos(x)-{nc})}\\$','\\$\\\\simplify{(2x)/({-nc}sin(x))}\\$','\\$\\\\simplify{(2)/({-nc}cos(x))}\\$',(-2/nc),'\\$\\\\simplify[fractionNumbers]{{-2/nc}}\\$'], \n \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{(x-{na})^{pa}/({nc}cos(x-{na})-{nc})}\\$','\\$\\\\simplify{({pa}(x-{na})^{pa-1})/({-nc}sin(x-{na}))}\\$','\\$\\\\simplify[unitPower,zeroPower]{({pa*(pa-1)}(x-{na})^{pa-2})/({-nc}cos(x-{na}))}\\$',if(pa=2,-2/nc,0),if(pa=2,'\\$\\\\simplify[fractionNumbers]{{-2/nc}}\\$','\\$ 0\\$')]\n\n]", "templateType": "anything", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

", "group": "Ungrouped variables"}, "choice1": {"name": "choice1", "definition": "random(sin_poly,cos_poly,poly_sin,poly_cos,trig_trig,log_sin,log_cos,log_tan,sin_log,cos_log,tan_log)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "pL": {"name": "pL", "definition": "shuffle(2..12)[0..5]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "ne": {"name": "ne", "definition": "nl[4]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "sin_poly": {"name": "sin_poly", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}sin(x-{na}))/((x-{na})*(x-{nb}))}\\$','\\$\\\\simplify{({nc}cos(x-{na}))/(2x-{na+nb})}\\$',nc/(na-nb),'\\$\\\\simplify[fractionNumbers]{{nc/(na-nb)}}\\$'], \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}sin(x-{na}))/(x^2-{na+nb}x+{na*nb})}\\$','\\$\\\\simplify{({nc}cos(x-{na}))/(2x-{na+nb})}\\$',nc/(na-nb),'\\$\\\\simplify[fractionNumbers]{{nc/(na-nb)}}\\$'],\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}sin(x-{na}))/(x-{na})^2}\\$','\\$\\\\simplify{({nc}cos(x-{na}))/(2(x-{na}))}\\$',0,'\\$0\\$'],\n\n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}sin(x))/(x^2-{nb}x)}\\$','\\$\\\\simplify{({nc}cos(x))/(2x-{nb})}\\$',-nc/nb,'\\$\\\\simplify[fractionNumbers]{{-nc/nb}}\\$'], \n['\\$x\\\\rightarrow 0^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}sin(x))/x^2}\\$','\\$\\\\simplify{({nc}cos(x))/(2x)}\\$',nc*infinity,'\\$\\\\simplify{{nc*infinity}}\\$'],\n['\\$x\\\\rightarrow 0^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}sin(x))/x^2}\\$','\\$\\\\simplify{({nc}cos(x))/(2x)}\\$',-nc*infinity,'\\$\\\\simplify{-{nc*infinity}}\\$'],\n \n['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}sin(x-{na}))/(x-{na})^{pa}}\\$','\\$\\\\simplify{({nc}cos(x-{na}))/({pa}(x-{na})^{pa-1})}\\$',nc*infinity,'\\$\\\\simplify{{nc*infinity}}\\$'],\n['\\$x\\\\rightarrow\\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}sin(x-{na}))/(x-{na})^{pa}}\\$','\\$\\\\simplify{({nc}cos(x-{na}))/({pa}(x-{na})^{pa-1})}\\$',if(mod(pa,2)=0,-nc*infinity,nc*infinity),if(mod(pa,2)=0,'\\$\\\\simplify{{-nc*infinity}}\\$','\\$\\\\simplify{{nc*infinity}}\\$')] \n\n]", "templateType": "anything", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches, latex display of what y approaches.

", "group": "Ungrouped variables"}, "choice2": {"name": "choice2", "definition": "random(choice1)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "cos_log": {"name": "cos_log", "definition": "[\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}cos(x-{na})-{pa})/({nb}ln(x-{na-1}))}\\$','\\$\\\\simplify{((x-{na-1})*({-pa}sin(x-{na})))/({nb})}\\$',0,'\\$ 0\\$'], \n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}cos(x)-{pa})/({nb}ln(x+1))}\\$','\\$\\\\simplify{((x+1)*({-pa}sin(x)))/({nb})}\\$',0,'\\$ 0 \\$'], \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}cos(x-{na})-{pa})/({nb}ln(x/{na}))}\\$','\\$\\\\simplify{(x*({-pa}sin(x-{na})))/({nb})}\\$',0,'\\$ 0 \\$'], \n['\\$x\\\\rightarrow 1\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}cos(pi/2*x))/({nb}ln(x))}\\$','\\$\\\\simplify{((x)*({-pa}*pi*sin(pi/2*x)))/({2*nb})}\\$',(-pi*pa)/(2*nb),'\\$\\\\simplify[fractionNumbers,simplifyFractions,unitFactor,unitDenominator]{({-pa}*{pi})/{2*nb}}\\$'],\n['\\$x\\\\rightarrow \\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}cos((x-{na})^2)-{pa})/({nb}ln(x-{na-1}))}\\$','\\$\\\\simplify{((x-{na-1})*{-pa}*2(x-{na})*sin((x-{na})^2))/({nb})}\\$',0,'\\$ 0\\$']\n]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "cos_poly": {"name": "cos_poly", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}cos(x-{na})-{nc})/((x-{na})*(x-{nb}))}\\$','\\$\\\\simplify{({-nc}sin(x-{na}))/(2x-{na+nb})}\\$',0,'\\$ 0\\$'], \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}cos(x-{na})-{nc})/(x^2-{na+nb}x+{na*nb})}\\$','\\$\\\\simplify{({-nc}sin(x-{na}))/(2x-{na+nb})}\\$',0,'\\$ 0\\$'], \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}cos(x-{na})-{nc})/(x-{na})^2}\\$','\\$\\\\simplify{({-nc}sin(x-{na}))/(2(x-{na}))}\\$','\\$\\\\simplify{({-nc}cos(x-{na}))/(2)}\\$',-nc/2,'\\$\\\\simplify[fractionNumbers]{{-nc/2}}\\$'],\n\n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}cos(x)-{nc})/(x^2-{nb}x)}\\$','\\$\\\\simplify{({-nc}sin(x))/(2x-{nb})}\\$',0,'\\$0\\$'], \n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}cos(x)-{nc})/x^2}\\$','\\$\\\\simplify{({-nc}sin(x))/(2x)}\\$','\\$\\\\simplify{({-nc}cos(x))/(2)}\\$',-nc/2,'\\$\\\\simplify[fractionNumbers]{{-nc/2}}\\$'],\n \n['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}cos(x-{na})-{nc})/(x-{na})^{pa}}\\$','\\$\\\\simplify{({-nc}sin(x-{na}))/({pa}(x-{na})^{pa-1})}\\$','\\$\\\\simplify[unitPower,zeroPower]{({-nc}cos(x-{na}))/({pa*(pa-1)}(x-{na})^{pa-2})}\\$',switch(pa=2,-nc/(pa*(pa-1)),-nc*infinity),switch(pa=2,'\\$\\\\var[fractionNumbers]{-nc/(pa*(pa-1))}\\$','\\$\\\\var{-nc*infinity}\\$')],\n['\\$x\\\\rightarrow\\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}cos(x-{na})-{nc})/(x-{na})^{pa}}\\$','\\$\\\\simplify{({-nc}sin(x-{na}))/({pa}(x-{na})^{pa-1})}\\$','\\$\\\\simplify[unitPower,zeroPower]{({-nc}cos(x-{na}))/({pa*(pa-1)}(x-{na})^{pa-2})}\\$',switch(pa=2,-nc/(pa*(pa-1)),mod(pa,2)=0,-nc*infinity,nc*infinity),switch(pa=2,'\\$\\\\var[fractionNumbers]{-nc/(pa*(pa-1))}\\$',mod(pa,2)=0,'\\$\\\\var{-nc*infinity}\\$','\\$\\\\var{nc*infinity}\\$')]\n]", "templateType": "anything", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches, latex display of what y approaches.

", "group": "Ungrouped variables"}, "log_sin": {"name": "log_sin", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}sin(x-{na}))}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*({pa}cos(x-{na})))}\\$',nb/pa,'\\$\\\\simplify[fractionNumbers]{{nb/pa}}\\$'], \n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x+1))/({pa}sin(x))}\\$','\\$\\\\simplify{({nb})/((x+1)*({pa}cos(x)))}\\$',nb/pa,'\\$\\\\simplify[fractionNumbers]{{nb/pa}}\\$'], \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x/{na}))/({pa}sin(x-{na}))}\\$','\\$\\\\simplify{({nb})/(x*({pa}cos(x-{na})))}\\$',nb/(pa*na),'\\$\\\\simplify[fractionNumbers,simplifyFractions]{{nb}/{pa*na}}\\$'], \n['\\$x\\\\rightarrow 1\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x))/({pa}sin(pi*x))}\\$','\\$\\\\simplify{({nb})/((x)*({pa}*pi*cos(pi*x)))}\\$',-nb/(pi*pa),'\\$\\\\simplify[fractionNumbers,simplifyFractions,unitFactor]{{-nb}/({pa}*{pi})}\\$'],\n['\\$x\\\\rightarrow \\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}sin((x-{na})^2))}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*{pa}*2(x-{na})*cos((x-{na})^2))}\\$',nb*infinity,'\\$\\\\simplify{{nb*infinity}}\\$'],\n['\\$x\\\\rightarrow \\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}sin((x-{na})^2))}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*{pa}*2(x-{na})*cos((x-{na})^2))}\\$',-nb*infinity,'\\$\\\\simplify{{-nb*infinity}}\\$']\n]", "templateType": "anything", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

", "group": "Ungrouped variables"}, "sin_log": {"name": "sin_log", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}sin(x-{na}))/({nb}ln(x-{na-1}))}\\$','\\$\\\\simplify{((x-{na-1})*({pa}cos(x-{na})))/({nb})}\\$',pa/nb,'\\$\\\\simplify[fractionNumbers]{{pa/nb}}\\$'], \n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}sin(x))/({nb}ln(x+1))}\\$','\\$\\\\simplify{((x+1)*({pa}cos(x)))/({nb})}\\$',pa/nb,'\\$\\\\simplify[fractionNumbers]{{pa/nb}}\\$'], \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}sin(x-{na}))/({nb}ln(x/{na}))}\\$','\\$\\\\simplify{(x*({pa}cos(x-{na})))/({nb})}\\$',(pa*na)/nb,'\\$\\\\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{pa*na}/{nb}}\\$'], \n['\\$x\\\\rightarrow 1\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}sin(pi*x))/({nb}ln(x))}\\$','\\$\\\\simplify{((x)*({pa}*pi*cos(pi*x)))/({nb})}\\$',(-pi*pa)/nb,'\\$\\\\simplify[fractionNumbers,simplifyFractions,unitFactor,unitDenominator]{({-pa}*{pi})/{nb}}\\$'],\n['\\$x\\\\rightarrow \\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}sin((x-{na})^2))/({nb}ln(x-{na-1}))}\\$','\\$\\\\simplify{((x-{na-1})*{pa}*2(x-{na})*cos((x-{na})^2))/({nb})}\\$',0,'\\$ 0\\$']\n]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "pb": {"name": "pb", "definition": "pl[1]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "nd": {"name": "nd", "definition": "nl[3]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "tan_log": {"name": "tan_log", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}tan(x-{na}))}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*({pa}sec(x-{na})^2))=({nb}cos(x-{na})^2)/((x-{na-1})*{pa})}\\$',nb/pa,'\\$\\\\simplify[fractionNumbers]{{nb/pa}}\\$'], \n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x+1))/({pa}tan(x))}\\$','\\$\\\\simplify{({nb})/((x+1)*{pa}*sec(x)^2)=({nb}cos(x)^2)/((x+1)*{pa})}\\$',nb/pa,'\\$\\\\simplify[fractionNumbers]{{nb/pa}}\\$'], \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x/{na}))/({pa}tan(x-{na}))}\\$','\\$\\\\simplify{({nb})/(x*{pa}*sec(x-{na})^2)=({nb}*cos(x-{na})^2)/(x*{pa})}\\$',nb/(pa*na),'\\$\\\\simplify[fractionNumbers,simplifyFractions]{{nb}/{pa*na}}\\$'], \n['\\$x\\\\rightarrow 1\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x))/({pa}tan(pi*x))}\\$','\\$\\\\simplify{({nb})/((x)*{pa}*pi*sec(pi*x)^2)=({nb}*cos(pi*x)^2)/((x)*{pa}*pi)}\\$',nb/(pi*pa),'\\$\\\\simplify[fractionNumbers,simplifyFractions,unitFactor]{{nb}/({pa}*{pi})}\\$'],\n['\\$x\\\\rightarrow \\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}tan((x-{na})^2))}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*{pa}*2(x-{na})*sec((x-{na})^2)^2)=({nb}*cos((x-{na})^2)^2)/((x-{na-1})*{pa}*2(x-{na}))}\\$',nb*infinity,'\\$\\\\simplify{{nb*infinity}}\\$'],\n['\\$x\\\\rightarrow \\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}tan((x-{na})^2))}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*{pa}*2(x-{na})*sec((x-{na})^2)^2)=({nb}*cos((x-{na})^2)^2)/((x-{na-1})*{pa}*2(x-{na}))}\\$',-nb*infinity,'\\$\\\\simplify{{-nb*infinity}}\\$']\n]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "trig_trig": {"name": "trig_trig", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}cos(x-{na})-{nc})/({pa}sin(x-{na}))}\\$','\\$\\\\simplify{({-nc}sin(x-{na}))/({pa}cos(x-{na}))}\\$',0,'\\$ 0\\$'], \n\n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nc}cos(x)-{nc})/({pa}sin(x))}\\$','\\$\\\\simplify{({-nc}sin(x))/({pa}cos(x))}\\$',0,'\\$0\\$'], \n\n ['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}sin(x-{na}))/({nc}cos(x-{na})-{nc})}\\$','\\$\\\\simplify{({pa}cos(x-{na}))/({-nc}sin(x-{na}))}\\$',(-pa/nc)*infinity,'\\$ \\\\simplify{{(-pa/nc)*infinity}}\\$'], \n ['\\$x\\\\rightarrow\\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}sin(x-{na}))/({nc}cos(x-{na})-{nc})}\\$','\\$\\\\simplify{({pa}cos(x-{na}))/({-nc}sin(x-{na}))}\\$',(pa/nc)*infinity,'\\$ \\\\simplify{{(pa/nc)*infinity}}\\$'],\n \n['\\$x\\\\rightarrow 0^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}sin(x))/({nc}cos(x)-{nc})}\\$','\\$\\\\simplify{({pa}cos(x))/({-nc}sin(x))}\\$',(-pa/nc)*infinity,'\\$ \\\\simplify{{(-pa/nc)*infinity}}\\$'],\n['\\$x\\\\rightarrow 0^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({pa}sin(x))/({nc}cos(x)-{nc})}\\$','\\$\\\\simplify{({pa}cos(x))/({-nc}sin(x))}\\$',(pa/nc)*infinity,'\\$ \\\\simplify{{(pa/nc)*infinity}}\\$']\n]", "templateType": "anything", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

", "group": "Ungrouped variables"}, "log_tan": {"name": "log_tan", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}tan(x-{na}))}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*({pa}sec(x-{na})^2))=({nb}cos(x-{na})^2)/((x-{na-1})*{pa})}\\$',nb/pa,'\\$\\\\simplify[fractionNumbers]{{nb/pa}}\\$'], \n['\\$x\\\\rightarrow 0\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x+1))/({pa}tan(x))}\\$','\\$\\\\simplify{({nb})/((x+1)*{pa}*sec(x)^2)=({nb}cos(x)^2)/((x+1)*{pa})}\\$',nb/pa,'\\$\\\\simplify[fractionNumbers]{{nb/pa}}\\$'], \n['\\$x\\\\rightarrow\\\\var{na}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x/{na}))/({pa}tan(x-{na}))}\\$','\\$\\\\simplify{({nb})/(x*{pa}*sec(x-{na})^2)=({nb}*cos(x-{na})^2)/(x*{pa})}\\$',nb/(pa*na),'\\$\\\\simplify[fractionNumbers,simplifyFractions]{{nb}/{pa*na}}\\$'], \n['\\$x\\\\rightarrow 1\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x))/({pa}tan(pi*x))}\\$','\\$\\\\simplify{({nb})/((x)*{pa}*pi*sec(pi*x)^2)=({nb}*cos(pi*x)^2)/((x)*{pa}*pi)}\\$',nb/(pi*pa),'\\$\\\\simplify[fractionNumbers,simplifyFractions,unitFactor]{{nb}/({pa}*{pi})}\\$'],\n['\\$x\\\\rightarrow \\\\var{na}^+\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}tan((x-{na})^2))}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*{pa}*2(x-{na})*sec((x-{na})^2)^2)=({nb}*cos((x-{na})^2)^2)/((x-{na-1})*{pa}*2(x-{na}))}\\$',nb*infinity,'\\$\\\\simplify{{nb*infinity}}\\$'],\n['\\$x\\\\rightarrow \\\\var{na}^-\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{({nb}ln(x-{na-1}))/({pa}tan((x-{na})^2))}\\$','\\$\\\\simplify{({nb})/((x-{na-1})*{pa}*2(x-{na})*sec((x-{na})^2)^2)=({nb}*cos((x-{na})^2)^2)/((x-{na-1})*{pa}*2(x-{na}))}\\$',-nb*infinity,'\\$\\\\simplify{{-nb*infinity}}\\$']\n]", "templateType": "anything", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

", "group": "Ungrouped variables"}, "nc": {"name": "nc", "definition": "nl[2]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "nL": {"name": "nL", "definition": "shuffle(-12..12 except 0)[0..5]", "templateType": "anything", "description": "", "group": "Ungrouped variables"}}, "ungrouped_variables": ["pL", "pa", "pb", "pc", "pd", "pe", "nL", "na", "nb", "nc", "nd", "ne", "alt1", "sin_poly", "cos_poly", "poly_sin", "poly_cos", "trig_trig", "log_sin", "log_cos", "log_tan", "sin_log", "cos_log", "tan_log", "choice1", "choice2"], "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question"}, {"name": "Maria's copy of Limits: L'Hospital's rule: Indeterminate form 0*infinity", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}], "advice": "

As {choice2[0]}, it appears {choice2[2]} approaches {choice2[1]}, but it isn't clear what this means. This is known as an indeterminate form of type {choice2[1]}. We rewrite this product as a quotient {choice2[4]} so that it is an indeterminate form of type {choice2[3]}. L'Hospital's rule says that if we have such an indeterminate form we can differentiate the numerator and denominator separately and take the limit of the quotient. That is, if $f$ and $g$ are differentiable on an open interval containing $a$, $g'(x)\\ne 0$ on that interval (except possibly at $x=a$), $\\lim_{x\\rightarrow a}f(x)$ and $\\lim_{x\\rightarrow a}g(x)$ both equal $\\infty$ or both equal $0$ and $\\lim_{x\\rightarrow a}\\frac{f'(x)}{g'(x)}$ exists (or equals $\\pm\\infty)$ then:

\n

\\[\\lim_{x\\rightarrow a} \\frac{f(x)}{g(x)}=\\lim_{x\\rightarrow a}\\frac{f'(x)}{g'(x)}.\\]

\n

(If this is still an indeterminate form we can (of course) repeat the procedure)

\n

\n

So by applying L'Hospital's rule we now need to determine what {choice2[5]} approaches as {choice2[0]}. But this is again an indeterminate form so we repeatedly apply L'Hospital's rule until it is not an indeterminate form and we arrive at needing to determine what {choice2[6]} approaches as {choice2[0]}. Now that this is no longer an indeterminate form, it should be clear that the limit is {choice2[-1]}.

\n

", "tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pL", "pa", "pb", "pc", "pd", "pe", "nL", "na", "nb", "nc", "nd", "ne", "alt1", "power_exp", "log_power", "exp_power", "log_sin", "log_tan", "tan_linear", "choice1", "choice2"], "parts": [{"type": "gapfill", "showCorrectAnswer": true, "variableReplacements": [], "gaps": [{"expectedvariablenames": [], "checkingtype": "absdiff", "vsetrangepoints": 5, "vsetrange": [0, 1], "scripts": {}, "answer": "{{choice2}[-2]}", "variableReplacementStrategy": "originalfirst", "showpreview": true, "type": "jme", "showCorrectAnswer": false, "checkingaccuracy": "0.0000000001", "showFeedbackIcon": true, "checkvariablenames": false, "variableReplacements": [], "marks": 1}], "variableReplacementStrategy": "originalfirst", "scripts": {}, "showFeedbackIcon": true, "marks": 0, "prompt": "

As {choice2[0]}, {choice2[2]} approaches [[0]] 

\n

Note: infinity is simply entered by typing infinity

"}], "variables": {"na": {"templateType": "anything", "definition": "nl[0]", "name": "na", "group": "Ungrouped variables", "description": ""}, "log_sin": {"templateType": "anything", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pa}ln(x-{na}))(sin(x-{na}))}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pa}ln(x-{na}))/(1/(sin(x-{na})))}\\$','\\$\\\\simplify{(({pa})/((x-{na}))/(-cos(x-{na})/sin(x-{na})^2))=(-{pa}sin(x-{na})^2)/((x-{na})cos(x-{na}))}\\$','\\$\\\\simplify{(-{2*pa}sin(x-{na})cos(x-{na}))/(-(x-{na})sin(x-{na})+cos(x-{na}))}\\$',0,'\\$0\\$'], \n['\\$x\\\\rightarrow 0^+\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pa}ln(x-0))(sin(x-0))}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pa}ln(x-0))/(1/(sin(x-0)))}\\$','\\$\\\\simplify{(({pa})/((x-0))/(-cos(x-0)/sin(x-0)^2))=(-{pa}sin(x-0)^2)/((x-0)cos(x-0))}\\$','\\$\\\\simplify{(-{2*pa}sin(x-0)cos(x-0))/(-(x-0)sin(x-0)+cos(x-0))}\\$',0,'\\$0\\$'],\n['\\$x\\\\rightarrow 0^+\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pa}ln(x-0))(sin(pi*x-0))}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pa}ln(x-0))/(1/(sin(pi*x-0)))}\\$','\\$\\\\simplify{(({pa})/((x-0))/(-pi*cos(pi*x-0)/sin(pi*x-0)^2))=(-{pa}sin(pi*x-0)^2)/(pi*(x-0)cos(pi*x-0))}\\$','\\$\\\\simplify{(-{2*pa}*pi*sin(pi*x-0)cos(pi*x-0))/(-pi^2*(x-0)sin(pi*x-0)+pi*cos(pi*x-0))}\\$',0,'\\$0\\$'],\n['\\$x\\\\rightarrow 1^+\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pa}ln(x-1))(sin(pi*x-0))}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pa}ln(x-1))/(1/(sin(pi*x-0)))}\\$','\\$\\\\simplify{(({pa})/((x-1))/(-pi*cos(pi*x-0)/sin(pi*x-0)^2))=(-{pa}sin(pi*x-0)^2)/(pi*(x-1)cos(pi*x-0))}\\$','\\$\\\\simplify{(-{2*pa}*pi*sin(pi*x-0)cos(pi*x-0))/(-pi^2*(x-1)sin(pi*x-0)+pi*cos(pi*x-0))}\\$',0,'\\$0\\$']\n \n]", "name": "log_sin", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "log_tan": {"templateType": "anything", "definition": "[\n\n['\\$x\\\\rightarrow\\\\var{na}^+\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pa}ln(x-{na}))(tan(x-{na}))}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pa}ln(x-{na}))/(cot(x-{na}))}\\$','\\$\\\\simplify{(({pa})/((x-{na})))/(-cosec(x-{na})^2)=(-{pa}sin(x-{na})^2)/((x-{na}))}\\$','\\$\\\\simplify{(-{2*pa}sin(x-{na})cos(x-{na}))}\\$',0,'\\$0\\$'], \n['\\$x\\\\rightarrow 0^+\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pa}ln(x-0))(tan(x-0))}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pa}ln(x-0))/(cot(x-0))}\\$','\\$\\\\simplify{(({pa})/((x-0))/(-cosec(x-0)^2))=(-{pa}sin(x-0)^2)/(x-0)}\\$','\\$\\\\simplify{(-{2*pa}sin(x-0)cos(x-0))/1}\\$',0,'\\$0\\$'],\n['\\$x\\\\rightarrow 0^+\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pa}ln(x-0))(tan(pi*x-0))}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pa}ln(x-0))/(cot(pi*x-0))}\\$','\\$\\\\simplify{(({pa})/((x-0))/(-pi*cosec(pi*x-0)^2))=(-{pa}sin(pi*x-0)^2)/(pi*(x-0))}\\$','\\$\\\\simplify{(-{2*pa}*pi*sin(pi*x-0)cos(pi*x-0))/(pi)}\\$',0,'\\$0\\$'],\n['\\$x\\\\rightarrow 1^+\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pa}ln(x-1))(tan(pi*x-0))}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pa}ln(x-1))/(cot(pi*x-0))}\\$','\\$\\\\simplify{(({pa})/((x-1))/(-pi*cosec(pi*x-0)^2))=(-{pa}sin(pi*x-0)^2)/(pi*(x-1))}\\$','\\$\\\\simplify{(-{2*pa}*pi*sin(pi*x-0)cos(pi*x-0))/(pi)}\\$',0,'\\$0\\$']\n \n]", "name": "log_tan", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "power_exp": {"templateType": "anything", "definition": "[\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pd}x^{pb}+{nd})(e^({-pa}x+{-nb}))}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pd}x^{pb}+{nd})/(e^({pa}x+{nb}))}\\$','\\$\\\\simplify{({pd}*{pb}x^{pb-1})/({pa}*e^({pa}x+{nb}))}\\$','\\$\\\\simplify[!othernumbers]{({pd}*{pb}!)/({pa}^{pb}*e^({pa}x+{nb}))}\\$',0,'\\$0\\$'], \n['\\$x\\\\rightarrow\\\\infty\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({-pd}x^{pb}+{nd})(e^({-pa}x+{-nb}))}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pd}x^{pb}+{nd})/(e^({pa}x+{nb}))}\\$','\\$\\\\simplify{({-pd}*{pb}x^{pb-1})/({pa}*e^({pa}x+{nb}))}\\$','\\$\\\\simplify[!othernumbers]{({-pd}*{pb}!)/({pa}^{pb}*e^({pa}x+{nb}))}\\$',0,'\\$0\\$'], \n\n\n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\infty\\\\cdot 0\\$'), '\\$\\\\simplify{({-pd}x^{pb}+{nd})(e^({pa}x+{-nb}))}\\$',if(mod(pb,2)=0,'\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({-pd}x^{pb}+{nd})/(e^({-pa}x+{nb}))}\\$','\\$\\\\simplify{({-pd}*{pb}x^{pb-1})/({-pa}e^({-pa}x+{nb}))}\\$','\\$\\\\simplify[!othernumbers]{({-pd}*{pb}!)/({-pa}^{pb}*e^({-pa}x+{nb}))}\\$',0,'\\$0\\$'],\n['\\$x\\\\rightarrow-\\\\infty\\$',if(mod(pb,2)=0,'\\$\\\\infty\\\\cdot 0\\$','\\$-\\\\infty\\\\cdot 0\\$'), '\\$\\\\simplify{({pd}x^{pb}+{nd})(e^({pa}x+{-nb}))}\\$',if(mod(pb,2)=0,'\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$'),'\\$\\\\simplify{({pd}x^{pb}+{nd})/(e^({-pa}x+{nb}))}\\$','\\$\\\\simplify{({pd}*{pb}x^{pb-1})/({-pa}e^({-pa}x+{nb}))}\\$','\\$\\\\simplify[!othernumbers]{({pd}*{pb}!)/({-pa}^{pb}*e^({-pa}x+{nb}))}\\$',0,'\\$0\\$']\n]", "name": "power_exp", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches, latex display of what y approaches.

"}, "exp_power": {"templateType": "anything", "definition": "[\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pc}e^({pa}x+{nb}))(x^{-pb})}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pc}e^({pa}x+{nb}))/(x^{pb})}\\$','\\$\\\\simplify{({pc}*{pa}*e^({pa}x+{nb}))/({pb}x^{pb-1})}\\$','\\$\\\\simplify[!othernumbers]{({pc}*{pa}^{pb}*e^({pa}x+{nb}))/({pb}!)}\\$',infinity,'\\$\\\\infty\\$'], \n['\\$x\\\\rightarrow\\\\infty\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({-pc}e^({pa}x+{nb}))(x^{-pb})}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pc}e^({pa}x+{nb}))/(x^{pb})}\\$','\\$\\\\simplify{({-pc}*{pa}*e^({pa}x+{nb}))/({pb}x^{pb-1})}\\$','\\$\\\\simplify[!othernumbers]{({-pc}*{pa}^{pb}*e^({pa}x+{nb}))/({pb}!)}\\$',-infinity,'\\$-\\\\infty\\$'], \n\n\n\n['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\infty\\\\cdot 0\\$', '\\$\\\\simplify{({pc}e^({-pa}x+{nb}))(x^{-pb})}\\$',if(mod(pb,2)=0,'\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\frac{\\\\infty}{-\\\\infty}\\$'), '\\$\\\\simplify{({pc}e^({-pa}x+{nb}))/(x^{pb})}\\$','\\$\\\\simplify{({pc}*{-pa}e^({-pa}x+{nb}))/(-{pb}x^{pb-1})}\\$','\\$\\\\simplify[!othernumbers]{({pc}*{-pa}^{pb}*e^({-pa}x+{nb}))/({pb}!)}\\$',if(mod(pb,2)=0,infinity,-infinity),if(mod(pb,2)=0,'\\$\\\\infty\\$','\\$-\\\\infty\\$')],\n['\\$x\\\\rightarrow-\\\\infty\\$','\\$-\\\\infty\\\\cdot 0\\$', '\\$\\\\simplify{({-pc}e^({-pa}x+{nb}))(x^{-pb})}\\$',if(mod(pb,2)=0,'\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({-pc}e^({-pa}x+{nb}))/(x^{pb})}\\$','\\$\\\\simplify{({pc}*{pa}e^({-pa}x+{nb}))/(-{pb}x^{pb-1})}\\$','\\$\\\\simplify[!othernumbers]{({-pc}*{-pa}^{pb}*e^({-pa}x+{nb}))/({pb}!)}\\$',if(mod(pb,2)=0,-infinity,infinity),if(mod(pb,2)=0,'\\$-\\\\infty\\$','\\$\\\\infty\\$')]\n]", "name": "exp_power", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches. 

"}, "tan_linear": {"templateType": "anything", "definition": "[\n\n['\\$x\\\\rightarrow\\\\frac{\\\\pi}{2}^+\\$','\\$0\\\\cdot-\\\\infty\\$','\\$\\\\simplify{{nb}(x-pi/2)(tan(x))}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{{nb}(x-pi/2)/(cot(x))}\\$','\\$\\\\simplify{({nb})/(-cosec(x)^2)=(-{nb}sin(x)^2)}\\$',-nb,'\\$\\\\var{-nb}\\$'], \n['\\$x\\\\rightarrow\\\\frac{\\\\pi}{2}^-\\$','\\$0\\\\cdot\\\\infty\\$','\\$\\\\simplify{{nb}(x-pi/2)(tan(x))}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{{nb}(x-pi/2)/(cot(x))}\\$','\\$\\\\simplify{({nb})/(-cosec(x)^2)=(-{nb}sin(x)^2)}\\$',-nb,'\\$\\\\var{-nb}\\$']\n,\n ['\\$x\\\\rightarrow\\\\frac{-\\\\pi}{2}^+\\$','\\$0\\\\cdot-\\\\infty\\$','\\$\\\\simplify{{nb}(pi/2-x)(tan(x))}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{{nb}(pi/2-x)/(cot(x))}\\$','\\$\\\\simplify{({-nb})/(-cosec(x)^2)=({nb}sin(x)^2)}\\$',-nb,'\\$\\\\var{nb}\\$'], \n['\\$x\\\\rightarrow\\\\frac{-\\\\pi}{2}^-\\$','\\$0\\\\cdot\\\\infty\\$','\\$\\\\simplify{{nb}(pi/2-x)(tan(x))}\\$','\\$\\\\frac{0}{0}\\$','\\$\\\\simplify{{nb}(pi/2-x)/(cot(x))}\\$','\\$\\\\simplify{({-nb})/(-cosec(x)^2)=({nb}sin(x)^2)}\\$',nb,'\\$\\\\var{nb}\\$']\n\n]", "name": "tan_linear", "group": "Ungrouped variables", "description": ""}, "pc": {"templateType": "anything", "definition": "pl[2]", "name": "pc", "group": "Ungrouped variables", "description": ""}, "nL": {"templateType": "anything", "definition": "shuffle(-12..12 except 0)[0..5]", "name": "nL", "group": "Ungrouped variables", "description": ""}, "choice1": {"templateType": "anything", "definition": "random(power_exp,log_power,exp_power,log_sin,log_tan,tan_linear)", "name": "choice1", "group": "Ungrouped variables", "description": ""}, "choice2": {"templateType": "anything", "definition": "random(choice1)", "name": "choice2", "group": "Ungrouped variables", "description": ""}, "nc": {"templateType": "anything", "definition": "nl[2]", "name": "nc", "group": "Ungrouped variables", "description": ""}, "ne": {"templateType": "anything", "definition": "nl[4]", "name": "ne", "group": "Ungrouped variables", "description": ""}, "pb": {"templateType": "anything", "definition": "pl[1]", "name": "pb", "group": "Ungrouped variables", "description": ""}, "pe": {"templateType": "anything", "definition": "pl[4]", "name": "pe", "group": "Ungrouped variables", "description": ""}, "alt1": {"templateType": "anything", "definition": "if(mod(pa,4)=0 or mod(pa,4)=1,1,-1)", "name": "alt1", "group": "Ungrouped variables", "description": ""}, "pd": {"templateType": "anything", "definition": "pl[3]", "name": "pd", "group": "Ungrouped variables", "description": ""}, "nd": {"templateType": "anything", "definition": "nl[3]", "name": "nd", "group": "Ungrouped variables", "description": ""}, "nb": {"templateType": "anything", "definition": "nl[1]", "name": "nb", "group": "Ungrouped variables", "description": ""}, "pa": {"templateType": "anything", "definition": "pl[0]", "name": "pa", "group": "Ungrouped variables", "description": ""}, "log_power": {"templateType": "anything", "definition": "[\n\n['\\$x\\\\rightarrow\\\\infty\\$','\\$\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({pc}ln({pa}x+{nb}))(x^{-pb})}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({pc}ln({pa}x+{nb}))/(x^{pb})}\\$','\\$\\\\simplify{({pc*pa}/({pa}x+{nb}))/({pb}x^{pb-1})=({pc*pa})/(({pa}x+{nb})*({pb}x^{pb-1}))}\\$',0,'\\$0\\$'], \n['\\$x\\\\rightarrow-\\\\infty\\$','\\$\\\\infty\\\\cdot 0\\$', '\\$\\\\simplify{({pc}ln({-pa}x+{nb}))(x^{-pb})}\\$',if(mod(pb,2)=0,'\\$\\\\frac{\\\\infty}{\\\\infty}\\$','\\$\\\\frac{\\\\infty}{-\\\\infty}\\$'), '\\$\\\\simplify{({pc}ln({-pa}x+{nb}))/(x^{pb})}\\$','\\$\\\\simplify{({-pc*pa}/({-pa}x+{nb}))/({pb}x^{pb-1})=({-pc*pa})/(({-pa}x+{nb})*({pb}x^{pb-1}))}\\$',0,'\\$0\\$']\n, \n['\\$x\\\\rightarrow\\\\infty\\$','\\$-\\\\infty\\\\cdot 0\\$','\\$\\\\simplify{({-pc}ln({pa}x+{nb}))(x^{-pb})}\\$','\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\simplify{({-pc}ln({pa}x+{nb}))/(x^{pb})}\\$','\\$\\\\simplify{({-pc*pa}/({pa}x+{nb}))/({pb}x^{pb-1})=({-pc*pa})/(({pa}x+{nb})*({pb}x^{pb-1}))}\\$',0,'\\$0\\$'], \n['\\$x\\\\rightarrow-\\\\infty\\$','\\$-\\\\infty\\\\cdot 0\\$', '\\$\\\\simplify{({-pc}ln({-pa}x+{nb}))(x^{-pb})}\\$',if(mod(pb,2)=0,'\\$\\\\frac{-\\\\infty}{\\\\infty}\\$','\\$\\\\frac{\\\\infty}{\\\\infty}\\$'), '\\$\\\\simplify{({-pc}ln({-pa}x+{nb}))/(x^{pb})}\\$','\\$\\\\simplify{({pc*pa}/({-pa}x+{nb}))/({pb}x^{pb-1})=({pc*pa})/(({-pa}x+{nb})*({pb}x^{pb-1}))}\\$',0,'\\$0\\$']\n]", "name": "log_power", "group": "Ungrouped variables", "description": "

using a list to keep track of important things

\n

what x approaches, indeterminate form type, what y is, the first application of L'Hospital's, (if needed) the final application of L'Hopital's, what y approaches, latex display of what y approaches.

"}, "pL": {"templateType": "anything", "definition": "shuffle(2..12)[0..5]", "name": "pL", "group": "Ungrouped variables", "description": ""}}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Just what the title says, I guess.

"}, "functions": {}, "variable_groups": [], "preamble": {"css": "", "js": ""}, "rulesets": {}, "statement": "

This question is about limits of indeterminate forms.

", "type": "question"}, {"name": "Maria's copy of Newton-Raphson method", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}], "ungrouped_variables": ["k", "a", "b", "c", "x1", "d", "x2", "x3", "x4", "x5", "x0"], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "rulesets": {}, "parts": [{"showFeedbackIcon": true, "marks": 0, "prompt": "

\\(x_0=\\var{x0}\\)

\n

\\(x_1=\\) [[0]]

\n

\\(x_2=\\) [[1]]

\n

\\(x_3=\\) [[2]]

\n

\\(x_4=\\) [[3]]

", "scripts": {}, "variableReplacements": [], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "gaps": [{"showFeedbackIcon": true, "correctAnswerFraction": false, "precisionPartialCredit": 0, "variableReplacements": [], "precisionMessage": "You have not given your answer to the correct precision.", "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "showCorrectAnswer": true, "precisionType": "dp", "type": "numberentry", "showPrecisionHint": true, "marks": 1, "precision": "3", "scripts": {}, "variableReplacementStrategy": "originalfirst", "minValue": "{x1}", "allowFractions": false, "strictPrecision": false, "maxValue": "{x1}", "mustBeReducedPC": 0}, {"showFeedbackIcon": true, "correctAnswerFraction": false, "precisionPartialCredit": 0, "variableReplacements": [], "precisionMessage": "You have not given your answer to the correct precision.", "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "showCorrectAnswer": true, "precisionType": "dp", "type": "numberentry", "showPrecisionHint": true, "marks": 1, "precision": "3", "scripts": {}, "variableReplacementStrategy": "originalfirst", "minValue": "{x2}", "allowFractions": false, "strictPrecision": false, "maxValue": "{x2}", "mustBeReducedPC": 0}, {"showFeedbackIcon": true, "correctAnswerFraction": false, "precisionPartialCredit": 0, "variableReplacements": [], "precisionMessage": "You have not given your answer to the correct precision.", "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "showCorrectAnswer": true, "precisionType": "dp", "type": "numberentry", "showPrecisionHint": true, "marks": 1, "precision": "3", "scripts": {}, "variableReplacementStrategy": "originalfirst", "minValue": "{x3}", "allowFractions": false, "strictPrecision": false, "maxValue": "{x3}", "mustBeReducedPC": 0}, {"showFeedbackIcon": true, "correctAnswerFraction": false, "precisionPartialCredit": 0, "variableReplacements": [], "precisionMessage": "You have not given your answer to the correct precision.", "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "showCorrectAnswer": true, "precisionType": "dp", "type": "numberentry", "showPrecisionHint": true, "marks": 1, "precision": "3", "scripts": {}, "variableReplacementStrategy": "originalfirst", "minValue": "{x4}", "allowFractions": false, "strictPrecision": false, "maxValue": "{x4}", "mustBeReducedPC": 0}], "showCorrectAnswer": true}], "advice": "

\\(x_{n+1}=x_n-\\frac{\\var{a}x_n^3-\\var{b}x_n^2+\\var{c}x+\\var{d}}{3(\\var{a})x_n^2-2(\\var{b})x+\\var{c}}\\)

\n

\\(x_0=\\var{x0}\\)

\n

\\(x_1=\\var{x0}-\\frac{(\\var{a})*(\\var{x0})^3-\\var{b}*(\\var{x0})^2+\\var{c}*(\\var{x0})+\\var{d}}{3(\\var{a})(\\var{x0})^2-2(\\var{b})(\\var{x0})+\\var{c}}=\\var{x1}\\)

\n

\\(x_2=\\var{x1}-\\frac{(\\var{a})*(\\var{x1})^3-\\var{b}*(\\var{x1})^2+\\var{c}*(\\var{x1})+\\var{d}}{3(\\var{a})(\\var{x1})^2-2(\\var{b})(\\var{x1})+\\var{c}}=\\var{x2}\\)

\n

\\(x_3=\\var{x2}-\\frac{(\\var{a})*(\\var{x2})^3-\\var{b}*(\\var{x2})^2+\\var{c}*(\\var{x2})+\\var{d}}{3(\\var{a})(\\var{x2})^2-2(\\var{b})(\\var{x2})+\\var{c}}=\\var{x3}\\)

\n

\\(x_4=\\var{x3}-\\frac{(\\var{a})*(\\var{x3})^3-\\var{b}*(\\var{x3})^2+\\var{c}*(\\var{x3})+\\var{d}}{3(\\var{a})(\\var{x3})^2-2(\\var{b})(\\var{x3})+\\var{c}}=\\var{x4}\\)

\n

\\(x_5=\\var{x4}-\\frac{(\\var{a})*(\\var{x4})^3-\\var{b}*(\\var{x4})^2+\\var{c}*(\\var{x4})+\\var{d}}{3(\\var{a})(\\var{x4})^2-2(\\var{b})(\\var{x4})+\\var{c}}=\\var{x5}\\)

", "variable_groups": [], "tags": [], "functions": {}, "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "variables": {"a": {"description": "", "name": "a", "templateType": "randrange", "definition": "random(1..5#1)", "group": "Ungrouped variables"}, "x0": {"description": "", "name": "x0", "templateType": "anything", "definition": "round(-b/(3*a))+k", "group": "Ungrouped variables"}, "x2": {"description": "", "name": "x2", "templateType": "anything", "definition": "x1-(a*x1^3-b*x1^2+c*x1+d)/(3*a*x1^2-2*b*x1+c)", "group": "Ungrouped variables"}, "c": {"description": "", "name": "c", "templateType": "randrange", "definition": "random(1..10#1)", "group": "Ungrouped variables"}, "x3": {"description": "", "name": "x3", "templateType": "anything", "definition": "x2-(a*x2^3-b*x2^2+c*x2+d)/(3*a*x2^2-2*b*x2+c)", "group": "Ungrouped variables"}, "d": {"description": "", "name": "d", "templateType": "randrange", "definition": "random(4..40#1)", "group": "Ungrouped variables"}, "k": {"description": "", "name": "k", "templateType": "randrange", "definition": "random(1..4#1)", "group": "Ungrouped variables"}, "x5": {"description": "", "name": "x5", "templateType": "anything", "definition": "x4-(a*x4^3-b*x4^2+c*x4+d)/(3*a*x4^2-2*b*x4+c)", "group": "Ungrouped variables"}, "x1": {"description": "", "name": "x1", "templateType": "anything", "definition": "x0-((a*x0^3-b*x0^2+c*x0+d)/(3*a*x0^2-2*b*x0+c))", "group": "Ungrouped variables"}, "x4": {"description": "", "name": "x4", "templateType": "anything", "definition": "x3-(a*x3^3-b*x3^2+c*x3+d)/(3*a*x3^2-2*b*x3+c)", "group": "Ungrouped variables"}, "b": {"description": "", "name": "b", "templateType": "randrange", "definition": "random(13..36#1)", "group": "Ungrouped variables"}}, "statement": "

Perform four iterations of the Newton-Raphson method, taking  \\(x_0=\\var{x0}\\)  as your initial estimate to find a root of the function:

\n

\\(f(x)=\\var{a}x^3-\\var{b}x^2+\\var{c}x+\\var{d}\\)

\n

Give your answers correct to three decimal places.

", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": []}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}], "extensions": [], "custom_part_types": [], "resources": []}