// Numbas version: finer_feedback_settings {"name": "Matrices Recap Exercises", "metadata": {"description": "
Set of matrices exercises for knowledge validation. Topics covered:
\nExercises covering matrix addition and subtraction
", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "Perform the following matrix additions and subtractions:
", "advice": "To add or subtract matrices, the matrices need to be of the same order (same number of rows and columns). We then add or subtract each corresponding element.
\ne.g.
\n\\[ \\begin{pmatrix} a_{1,1} & a_{1,2} \\\\ a_{2,1} & a_{2,2} \\\\ \\end{pmatrix} + \\begin{pmatrix} b_{1,1} & b_{1,2} \\\\ b_{2,1} & b_{2,2} \\\\ \\end{pmatrix} = \\begin{pmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} \\\\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} \\\\ \\end{pmatrix} \\]
\n\nThe resulting matrix will also be of the same order.
\n\ne.g. Part a)
\n\\[ \\simplify{{maP1a}} + \\simplify{{maP1b}} = \\begin{pmatrix} \\var{maP1a[0][0]} + \\var{maP1b[0][0]} & \\var{maP1a[0][1]} + \\var{maP1b[0][1]} \\\\ \\var{maP1a[1][0]} + \\var{maP1b[1][0]} & \\var{maP1a[1][1]} + \\var{maP1b[1][1]} \\\\ \\end{pmatrix} = \\simplify{{maP1a + maP1b}} \\]
", "rulesets": {}, "variables": {"maP1a": {"name": "maP1a", "group": "Ungrouped variables", "definition": "matrixrandom(2,2)", "description": "", "templateType": "anything"}, "maP1b": {"name": "maP1b", "group": "Ungrouped variables", "definition": "matrixrandom(2,2)", "description": "", "templateType": "anything"}, "maP2a": {"name": "maP2a", "group": "Ungrouped variables", "definition": "matrixrandom(2,2)", "description": "", "templateType": "anything"}, "maP2b": {"name": "maP2b", "group": "Ungrouped variables", "definition": "matrixrandom(2,2)", "description": "", "templateType": "anything"}, "maP3a": {"name": "maP3a", "group": "Ungrouped variables", "definition": "matrixrandom(2,2)", "description": "", "templateType": "anything"}, "maP3b": {"name": "maP3b", "group": "Ungrouped variables", "definition": "matrixrandom(2,2)", "description": "", "templateType": "anything"}, "maP4a": {"name": "maP4a", "group": "Ungrouped variables", "definition": "matrixrandom(2,4)", "description": "", "templateType": "anything"}, "maP4b": {"name": "maP4b", "group": "Ungrouped variables", "definition": "matrixrandom(2,4)", "description": "", "templateType": "anything"}, "maP5a": {"name": "maP5a", "group": "Ungrouped variables", "definition": "matrixrandom(4,4)", "description": "", "templateType": "anything"}, "maP5b": {"name": "maP5b", "group": "Ungrouped variables", "definition": "matrixrandom(4,4)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["maP1a", "maP1b", "maP2a", "maP2b", "maP3a", "maP3b", "maP4a", "maP4b", "maP5a", "maP5b"], "variable_groups": [], "functions": {"matrixrandom": {"parameters": [["rows", "integer"], ["columns", "integer"]], "type": "matrix", "language": "jme", "definition": "matrix(repeat(repeat(random(0..9)*(random(1,1,1,-1)),columns),rows))"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{maP1a}}+\\simplify{{maP1b}} =$ [[0]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "maP1a + maP1b", "correctAnswerFractions": false, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": "1", "maxColumns": "9", "minRows": 1, "maxRows": "9"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{maP2a}}+\\simplify{{maP2b}} =$ [[0]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "maP2a + maP2b", "correctAnswerFractions": false, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": "1", "maxColumns": "9", "minRows": 1, "maxRows": "9"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{maP3a}}-\\simplify{{maP3b}} =$ [[0]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "maP3a - maP3b", "correctAnswerFractions": false, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{maP4a}}+\\simplify{{maP4b}} =$ [[0]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "maP4a + maP4b", "correctAnswerFractions": false, "numRows": "2", "numColumns": "2", "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": "9", "minRows": 1, "maxRows": "9"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{maP5a}}-\\simplify{{maP5b}} =$ [[0]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "maP5a - maP5b", "correctAnswerFractions": false, "numRows": "2", "numColumns": "2", "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": "9", "minRows": 1, "maxRows": "9"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Matrix Multiplication", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mark Patterson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5064/"}], "tags": [], "metadata": {"description": "Matrix by scalar and matrix by matrix multiplication exercises.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Answer the following questions on matrix multiplication.
", "advice": "For scalar multiplication, multiply each element by the scalar value. The resultant matrix will be of the same order (size) as the starting matrix.
\ne.g. for the first question:
\n$\\simplify{{maS1}}\\times\\var{rand1} = \\begin{pmatrix}
\\var{maS1[0][0]}\\times\\var{rand1} & \\var{maS1[0][1]}\\times\\var{rand1} \\\\
\\var{maS1[1][0]}\\times\\var{rand1} & \\var{maS1[1][1]}\\times\\var{rand1}
\\end{pmatrix} = \\simplify{{maS1a}}$
Matrices can only be multiplied together when the number of columns in the first matrix is equal to the number of rows in the second matrix. The resultant matrix will have the same number of rows as the first matrix, and the same number of columns as the second matrix.
\nFor $AC$,
\n$A = \\simplify{{maMa}} C = \\simplify{{maMc}}$
\nThe order of $A$ is [3 x 2] and the order of $C$ is [2 x 4].
\n[3 x 2] x [2 x 4] : The inner numbers match, therefore these matrices can be multiplied. The outer numbers give the size of the new matrix, which will be [3 x 4].
\nThe answer matrix will look like this: $\\begin{pmatrix}
ac_{11} & ac_{12} & ac_{13} & ac_{14} \\\\
ac_{21} & ac_{22} & ac_{23} & ac_{24} \\\\
ac_{31} & ac_{32} & ac_{33} & ac_{34}
\\end{pmatrix}$
To work out the values for the answer matrix we multiply:-
\nSo:
\n$ac_{11} = a_{11}c_{11}+a_{12}c_{21} = \\var{maMa[0][0]}\\times\\var{maMc[0][0]} + \\var{maMa[0][1]}\\times\\var{maMc[1][0]} = \\var{maMac[0][0]}$
\n$ac_{12} = a_{11}c_{12}+a_{12}c_{22} = \\var{maMa[0][0]}\\times\\var{maMc[0][1]} + \\var{maMa[0][1]}\\times\\var{maMc[1][1]} = \\var{maMac[0][1]}$
\n$ac_{13} = a_{11}c_{13}+a_{12}c_{23} = \\var{maMa[0][0]}\\times\\var{maMc[0][2]} + \\var{maMa[0][1]}\\times\\var{maMc[1][2]} = \\var{maMac[0][2]}$
\n$ac_{14} = a_{11}c_{14}+a_{12}c_{24} = \\var{maMa[0][0]}\\times\\var{maMc[0][3]} + \\var{maMa[0][1]}\\times\\var{maMc[1][3]} = \\var{maMac[0][3]}$
\n$ac_{21} = a_{21}c_{11}+a_{22}c_{21} = \\var{maMa[1][0]}\\times\\var{maMc[0][0]} + \\var{maMa[1][1]}\\times\\var{maMc[1][0]} = \\var{maMac[1][0]}$
\nand so on...
", "rulesets": {}, "variables": {"maS1": {"name": "maS1", "group": "Ungrouped variables", "definition": "matrixrandom(2,2)", "description": "", "templateType": "anything"}, "rand1": {"name": "rand1", "group": "Ungrouped variables", "definition": "random(1..9)*random(1,1,1,-1)", "description": "", "templateType": "anything"}, "maS2": {"name": "maS2", "group": "Ungrouped variables", "definition": "matrixrandom(2,3)", "description": "", "templateType": "anything"}, "rand2": {"name": "rand2", "group": "Ungrouped variables", "definition": "random(1..9)*random(1,1,1,-1)", "description": "", "templateType": "anything"}, "maS3": {"name": "maS3", "group": "Ungrouped variables", "definition": "matrixrandom(1,4)", "description": "", "templateType": "anything"}, "rand3": {"name": "rand3", "group": "Ungrouped variables", "definition": "random(1..9)*random(1,1,1,-1)", "description": "", "templateType": "anything"}, "maMa": {"name": "maMa", "group": "Ungrouped variables", "definition": "matrixrandomN(3,2)", "description": "", "templateType": "anything"}, "maMb": {"name": "maMb", "group": "Ungrouped variables", "definition": "matrixrandomN(3,3)", "description": "", "templateType": "anything"}, "maMc": {"name": "maMc", "group": "Ungrouped variables", "definition": "matrixrandomN(2,4)", "description": "", "templateType": "anything"}, "maMd": {"name": "maMd", "group": "Ungrouped variables", "definition": "matrixrandomN(4,3)", "description": "", "templateType": "anything"}, "maMe": {"name": "maMe", "group": "Ungrouped variables", "definition": "matrixrandomN(4,2)", "description": "", "templateType": "anything"}, "maS1a": {"name": "maS1a", "group": "Ungrouped variables", "definition": "maS1*rand1", "description": "", "templateType": "anything"}, "maMac": {"name": "maMac", "group": "Ungrouped variables", "definition": "maMa*maMc", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["maS1", "rand1", "maS2", "rand2", "maS3", "rand3", "maMa", "maMb", "maMc", "maMd", "maMe", "maS1a", "maMac"], "variable_groups": [], "functions": {"matrixrandom": {"parameters": [["rows", "integer"], ["columns", "integer"]], "type": "matrix", "language": "jme", "definition": "matrix(repeat(repeat(random(0..9)*(random(1,1,1,-1)),columns),rows))"}, "matrixrandomN": {"parameters": [["rows", "integer"], ["columns", "integer"]], "type": "matrix", "language": "jme", "definition": "matrix(repeat(repeat(random(0..9),columns),rows))"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Perform the following matrix scalar multiplications.
\n\n$\\simplify{{maS1}}\\times\\simplify{{rand1}} =$ [[0]]
\n\n$\\simplify{{maS2}}\\times\\simplify{{rand2}} =$ [[1]]
\n\n$\\simplify{{maS3}}\\times\\simplify{{rand3}} =$ [[2]]
\n\n\n", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "maS1*rand1", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "maS2*rand2", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "maS3*rand3", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Consider the following matrices
\n\n$A=\\simplify{{maMa}}$ $B=\\simplify{{maMb}}$ $C=\\simplify{{maMc}}$ $D=\\simplify{{maMd}}$ $E=\\simplify{{maMe}}$
\n\n"}, {"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which of the following combinations can be defined?
", "minMarks": 0, "maxMarks": "7", "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": false, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "choices": ["AB", "DB", "AC", "CE", "EC", "DE", "BD"], "matrix": [[0, "1"], ["1", 0], ["1", 0], ["1", 0], ["1", 0], [0, "1"], [0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["Yes", "No"]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What will the order of the matrix produced be for each of these multiplications?
\n\nAC: [[0]]x [[1]]
\nBA: [[2]]x [[3]]
\nCE: [[4]]x [[5]]
\nEC: [[6]]x [[7]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "numrows(maMa*maMc)", "maxValue": "numrows(maMa*maMc)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "numcolumns(maMa*maMc)", "maxValue": "numcolumns(maMa*maMc)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "numrows(maMb*maMa)", "maxValue": "numrows(maMb*maMa)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "numcolumns(maMb*maMa)", "maxValue": "numcolumns(maMb*maMa)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "numrows(maMc*maMe)", "maxValue": "numrows(maMc*maMe)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "numcolumns(maMc*maMe)", "maxValue": "numcolumns(maMc*maMe)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "numrows(maMe*maMc)", "maxValue": "numrows(maMe*maMc)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "numcolumns(maMe*maMc)", "maxValue": "numcolumns(maMe*maMc)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the product of AC.
\nAC = $\\simplify{{maMa}}\\times\\simplify{{maMc}} =$ ?
", "correctAnswer": "maMa*maMc", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the product of CE.
\nCE = $\\simplify{{maMc}}\\times\\simplify{{maMe}} =$ ?
", "correctAnswer": "maMc*maMe", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the product of EC.
\nEC = $\\simplify{{maMe}}\\times\\simplify{{maMc}} =$ ?
", "correctAnswer": "maMe*maMc", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Matrix Determinants", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mark Patterson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5064/"}], "tags": [], "metadata": {"description": "Exercises on calculating the determinant of 2x2 and 3x3 matrices.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Calculate the determinants of the following matrices.
", "advice": "", "rulesets": {}, "variables": {"maA": {"name": "maA", "group": "Ungrouped variables", "definition": "matrixrandom(2,2)", "description": "", "templateType": "anything"}, "maB": {"name": "maB", "group": "Ungrouped variables", "definition": "matrixrandom(2,2)", "description": "", "templateType": "anything"}, "maC": {"name": "maC", "group": "Ungrouped variables", "definition": "matrixrandom(3,3)", "description": "", "templateType": "anything"}, "maD": {"name": "maD", "group": "Ungrouped variables", "definition": "matrixrandom(3,3)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["maA", "maB", "maC", "maD"], "variable_groups": [], "functions": {"matrixrandom": {"parameters": [["rows", "integer"], ["columns", "number"]], "type": "matrix", "language": "jme", "definition": "matrix(repeat(repeat(random(0..9)*(random(1,1,1,-1)),columns),rows))"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the determinant of $A = \\simplify{{maA}}$
", "minValue": "det(maA)", "maxValue": "det(maA)", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the determinant of $B = \\simplify{{maB}}$
", "minValue": "det(maB)", "maxValue": "det(maB)", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the determinant of $C = \\simplify{{maC}}$
", "minValue": "det(maC)", "maxValue": "det(maC)", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the determinant of $D = \\simplify{{maD}}$
", "minValue": "det(maD)", "maxValue": "det(maD)", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Matrix Inversion", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mark Patterson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5064/"}], "tags": [], "metadata": {"description": "Exercises on inverting 2x2 and 3x3 matrices.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Invert the following matrices. (Input your answers as fractions.)
", "advice": "", "rulesets": {}, "variables": {"maA": {"name": "maA", "group": "Ungrouped variables", "definition": "matrixRandomInvertable(matrixrandom(2,2))", "description": "", "templateType": "anything"}, "detA": {"name": "detA", "group": "Ungrouped variables", "definition": "det(maA)", "description": "", "templateType": "anything"}, "detTest": {"name": "detTest", "group": "Ungrouped variables", "definition": "det(matrixrandom(2,2))", "description": "", "templateType": "anything"}, "maB": {"name": "maB", "group": "Ungrouped variables", "definition": "matrixRandomInvertable(matrixrandom(2,2))", "description": "", "templateType": "anything"}, "maC": {"name": "maC", "group": "Ungrouped variables", "definition": "matrixRandomInvertable(matrixrandom(3,3))", "description": "", "templateType": "anything"}, "maD": {"name": "maD", "group": "Ungrouped variables", "definition": "matrixRandomInvertable(matrixrandom(3,3))", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "detA<>0", "maxRuns": 100}, "ungrouped_variables": ["maA", "detA", "detTest", "maB", "maC", "maD"], "variable_groups": [], "functions": {"matrixrandom": {"parameters": [["rows", "integer"], ["columns", "integer"]], "type": "matrix", "language": "jme", "definition": "matrix(repeat(repeat(random(0..9)*(random(1,1,1,-1)),columns),rows))"}, "matrixRandomInvertable": {"parameters": [["ma", "matrix"]], "type": "matrix", "language": "jme", "definition": "if(det(ma)<>0,ma,\n matrixRandomInvertable(\n matrix(repeat(repeat(random(0..9)*(random(1,1,1,-1)),numcolumns(ma)),numrows(ma)))\n )\n)"}, "inv2by2": {"parameters": [["m", "matrix"]], "type": "matrix", "language": "jme", "definition": "transpose(matrix([\n [m[1][1], -m[1][0]],\n [-m[0][1], m[0][0]]\n]))/det(m)"}, "inv3by3": {"parameters": [["m", "matrix"]], "type": "matrix", "language": "jme", "definition": "transpose(matrix([\n [m[1][1]*m[2][2]-m[2][1]*m[1][2], -(m[1][0]*m[2][2]-m[2][0]*m[1][2]), m[1][0]*m[2][1]-m[2][0]*m[1][1]],\n [-(m[0][1]*m[2][2]-m[2][1]*m[0][2]), m[0][0]*m[2][2]-m[2][0]*m[0][2], -(m[0][0]*m[2][1]-m[2][0]*m[0][1])],\n [m[0][1]*m[1][2]-m[1][1]*m[0][2], -(m[0][0]*m[1][2]-m[1][0]*m[0][2]), m[0][0]*m[1][1]-m[1][0]*m[0][1]]\n]))/det(m)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$A = \\simplify{{maA}}$
", "correctAnswer": "inv2by2(maA)", "correctAnswerFractions": true, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": "0.003", "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$B = \\simplify{{maB}}$
", "correctAnswer": "inv2by2(maB)", "correctAnswerFractions": true, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": "0.003", "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$C = \\simplify{{maC}}$
", "correctAnswer": "inv3by3(maC)", "correctAnswerFractions": true, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": "0.003", "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$D = \\simplify{{maD}}$
", "correctAnswer": "inv3by3(maD)", "correctAnswerFractions": true, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": "0.003", "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Simultaneous Equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mark Patterson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5064/"}], "tags": [], "metadata": {"description": "Exercises in solving simultaneous equations with 2 variables.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Solve the following simultaneous equations.
", "advice": "To solve simultaneous equations, first rewrite the equations in matrix form of $Ab = C$, where the matrix $A$ will contain the coefficients of the equation, $b$ will contain the unknown values and $C$ will contain the constants.
\nWe rearrange $Ab = C$ to get $A^{-1}C = b$.
\nSo, we need to find the inverse of $A$ and multiple it with $C$. This will give us $b$, i.e. the values for $x$ and $y$.
\n\nFor the first question:
\n$A = \\simplify{{maA}}$ $b = \\begin{pmatrix}x\\\\y\\end{pmatrix}$ $C = \\begin{pmatrix}\\var{a1}\\\\ \\var{a2}\\end{pmatrix}$
\nTo find the inverse of $A$, switch the elements on the leading diagonal, change the signs on the non-leading diagonal, and divide all elements by the determinant.
\nThe determinant of $A$ is $|A| = (\\var{maA[0][0]}\\times\\var{maA[1][1]}) - (\\var{maA[0][1]}\\times\\var{maA[1][0]}) = \\var{detA}$
\nThe inverse of $A$ is $A^{-1} = \\dfrac{1}{\\var{detA}}\\times\\begin{pmatrix}
\\var{maAA[0][0]} & \\var{maAA[0][1]} \\\\
\\var{maAA[1][0]} & \\var{maAA[1][1]}
\\end{pmatrix} =
\\begin{pmatrix}
\\frac{\\var{maAA[0][0]}}{\\var{detA}} & \\frac{\\var{maAA[0][1]}}{\\var{detA}} \\\\
\\frac{\\var{maAA[1][0]}}{\\var{detA}} & \\frac{\\var{maAA[1][1]}}{\\var{detA}}
\\end{pmatrix}$
Rearranging for $A^{-1}C = b$:
\n$A^{-1}\\times C =
\\begin{pmatrix}
\\frac{\\var{maAA[0][0]}}{\\var{detA}} & \\frac{\\var{maAA[0][1]}}{\\var{detA}} \\\\
\\frac{\\var{maAA[1][0]}}{\\var{detA}} & \\frac{\\var{maAA[1][1]}}{\\var{detA}}
\\end{pmatrix}
\\times\\begin{pmatrix}\\var{a1}\\\\ \\var{a2}\\end{pmatrix} =
\\begin{pmatrix}
\\frac{\\var{maAA[0][0]}}{\\var{detA}}\\times\\var{a1} + \\frac{\\var{maAA[0][1]}}{\\var{detA}}\\times\\var{a2} \\\\
\\frac{\\var{maAA[1][0]}}{\\var{detA}}\\times\\var{a1} + \\frac{\\var{maAA[1][1]}}{\\var{detA}}\\times\\var{a2}
\\end{pmatrix} =
\\begin{pmatrix}\\var{ax}\\\\ \\var{ay}\\end{pmatrix}$
Therefore $x = \\var{ax}$ and $y = \\var{ay}$.
\n", "rulesets": {}, "variables": {"ax": {"name": "ax", "group": "Ungrouped variables", "definition": "random(1..9)*random(1,1,1,-1)", "description": "", "templateType": "anything"}, "ay": {"name": "ay", "group": "Ungrouped variables", "definition": "random(1..9)*random(1,1,1,-1)", "description": "", "templateType": "anything"}, "maA": {"name": "maA", "group": "Ungrouped variables", "definition": "matrixrandomN(2,2)", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "maA[0][0]*ax + maA[0][1]*ay", "description": "", "templateType": "anything"}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "maA[1][0]*ax + maA[1][1]*ay", "description": "", "templateType": "anything"}, "bx": {"name": "bx", "group": "Ungrouped variables", "definition": "random(1..9)*random(1,1,1,-1)", "description": "", "templateType": "anything"}, "by": {"name": "by", "group": "Ungrouped variables", "definition": "random(1..9)*random(1,1,1,-1)", "description": "", "templateType": "anything"}, "maB": {"name": "maB", "group": "Ungrouped variables", "definition": "matrixrandomN(2,2)", "description": "", "templateType": "anything"}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "maB[0][0]*bx + maB[0][1]*by", "description": "", "templateType": "anything"}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "maB[1][0]*bx + maB[1][1]*by", "description": "", "templateType": "anything"}, "maAA": {"name": "maAA", "group": "Ungrouped variables", "definition": "matrix(\n [maA[1][1], -maA[0][1]],\n [-maA[1][0], maA[0][0]]\n)", "description": "", "templateType": "anything"}, "detA": {"name": "detA", "group": "Ungrouped variables", "definition": "det(maA)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["ax", "ay", "maA", "a1", "a2", "bx", "by", "maB", "b1", "b2", "maAA", "detA"], "variable_groups": [], "functions": {"matrixrandomN": {"parameters": [["rows", "integer"], ["columns", "integer"]], "type": "matrix", "language": "jme", "definition": "matrix(repeat(repeat(random(1..9)*(random(1,1,1,-1)),columns),rows))"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{maA[0][0]}}x + \\simplify{{maA[0][1]}}y = \\simplify{{a1}}$
\n$\\simplify{{maA[1][0]}}x +\\simplify{{maA[1][1]}}y = \\simplify{{a2}}$
\n\n$x =$ [[0]]
\n$y =$ [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ax", "maxValue": "ax", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ay", "maxValue": "ay", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{maB[0][0]}}x + \\simplify{{maB[0][1]}}y = \\simplify{{b1}}$
\n$\\simplify{{maB[1][0]}}x +\\simplify{{maB[1][1]}}y = \\simplify{{b2}}$
\n\n$x =$ [[0]]
\n$y =$ [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "bx", "maxValue": "bx", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "by", "maxValue": "by", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": false, "showtotalmark": true, "showanswerstate": false, "allowrevealanswer": false, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "oncompletion", "showactualmarkwhen": "oncompletion", "showtotalmarkwhen": "always", "showanswerstatewhen": "oncompletion", "showadvicewhen": "inreview"}, "type": "exam", "contributors": [{"name": "Mark Patterson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5064/"}], "extensions": [], "custom_part_types": [], "resources": []}