// Numbas version: finer_feedback_settings {"name": "Weitere \u00dcbungen (Lektion 1)", "metadata": {"description": "
Weitere Übungen zur ersten Lektion
", "licence": "Creative Commons Attribution 4.0 International"}, "duration": 0, "percentPass": "0", "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["Men\u00fcs", "", "", ""], "questions": [{"name": "Produktregel (Men\u00fceinkleidung)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}], "tags": [], "metadata": {"description": "Einfache Aufgabe zur Produktregel
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Ein Restaurant hat eine Speisekarte mit $\\var{a}$ Vorspeisen, $\\var{b}$ Hauptgerichten und $\\var{c}$ Desserts.
\nWie viele Möglichkeiten gibt es, sich als Gast ein Menü mit genau einer Vorspeise, einem Hauptgericht und einem Dessert zusammenzustellen?
\n", "advice": "
Die Anzahl der Möglichkeiten ergibt sich gemäß Produktregel als $\\var{a}\\cdot \\var{b}\\cdot \\var{c}=\\var{a*b*c}$
", "rulesets": {}, "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(5..10)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(15..30)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(5..10)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ".copyright-footer{\n display:none;}"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Anzahl verschiedener Menüs = [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 2, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a*b*c", "maxValue": "a*b*c", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Sweatshirts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}], "tags": [], "metadata": {"description": "Zwei Läden verkaufen verschiedenfärbige Sweatshirts.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "In einem Dorf verkaufen zwei Geschäfte Sweatshirts. Das erste Geschäft hat $\\var{a}$ Modelle in jeweils $\\var{c}$ Farben. Das zweite Geschäft hat $\\var{b}$ Modelle in $\\var{d}$ Farben. Die Modelle im ersten und zweiten Geschäft sind alle voneinander verschieden. Wie viele verschiedene Sweatshirts kann man in diesem Dorf kaufen?
", "advice": "Es gibt $\\var{a} \\cdot \\var{c}=\\var{a*c}$ verschiedene Sweatshirts im ersten Geschäft und $\\var{b} \\cdot \\var{d}=\\var{b*d}$ im zweiten Geschäft. Beide Anzahlen dürfen addiert werden (disjunkte Mengen), also gibt es $\\var{ans}$ verschiedene Sweatshirts zu kaufen.
", "rulesets": {}, "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(15..30)", "description": "", "templateType": "anything"}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "a*c+b*d", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(5..10)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(15..30)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(5..10)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "ans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ".copyright-footer{\n display:none;}"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Anzahl verschiedener Sweatshirts = [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 2, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans", "maxValue": "ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Autoh\u00e4ndler", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}], "tags": [], "metadata": {"description": "Kombinationen mit Wdh., einfache Einkleidung
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Ein Autohandel beschäftigt $\\var{p}$ Verkäufer*innen. Ein*e Verkäufer*in erhält €$\\,100$ Bonus für jedes verkaufte Auto.
\nGestern wurden $\\var{b}$ Autos verkauft.
\nAuf wie viele verschiedene Arten kann der auszuzahlende Bonus von €$\\,\\var{b*100}$ unter den $\\var{p}$ Verkäufer*innen aufzuteilen sein?
", "advice": "Wir betrachten die Reihenfolge der Autoverkäufe für unwichtig, allerdings die Anzahl der je Verkäufer*in verkauften Autos für wichtig.
\nDies ist ein Anwendungsfall für die Kombinationen mit Wiederholung, bzw. im Fächer-Teilchen-Modell: Verteilung von $k=\\var{b}$ Teilchen (Autos) auf $n=\\var{p}$ Fächer (Verkäufer*innen), wobei Mehrfachbelegungen erlaubt sind und die Teilchen ununterscheidbar (jedes Auto gibt denselben Bonus von €$\\,100$). Die Anzahl verschiedener Aufteilungen ist demnach:
\n\\[\\binom{\\var{p}+\\var{b}-1}{\\var{b}}=\\var{ans}\\]
", "rulesets": {}, "variables": {"ans": {"name": "ans", "group": "Ungrouped variables", "definition": "comb(p+b-1,b)", "description": "", "templateType": "anything"}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(5..10)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "if(tb<=p,p+1,tb)", "description": "", "templateType": "anything"}, "tb": {"name": "tb", "group": "Ungrouped variables", "definition": "random(7..15)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["p", "b", "tb", "ans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ".copyright-footer{\n display:none;}"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Anzahl verschiedener Aufteilungen = [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 2, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans", "maxValue": "ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Teilmengen (Kinder)", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}], "tags": [], "metadata": {"description": "Verschiedene Fragen zu Anzahlen von Teilmengen.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Es sei $K$ eine Menge von $\\var{sum}$ Kindern, $M$ die Teilmenge der Mädchen mit $|M|=\\var{m}$, $B$ die Teilmenge der Burschen mit $|B|=\\var{b}$.
", "advice": "(a) Für diese Frage ist es egal, ob es Burschen oder Mädchen sind. Es sind also aus $n=\\var{sum}$ Elementen $k=\\var{(sum+1)/2}$ ohne Wiederholung und ohne Beachtung der Reihenfolge, d.h. Kombinationen (ohne Wiederholung), also $\\binom{\\var{sum}}{\\var{(sum+1)/2}}=\\var{a_result}$.
\n\n\n
(b) Für diese Frage sind die Teilgruppen \"Mädchen\" und \"Burschen\" getrennt zu betrachten, sonst gilt daselbe wie bei (a): Innerhalb der Gruppen erfolgt eine Auswahl ohne Wiederholung und ohne Beachtung der Reihenfolge, man erhält also $\\binom{\\var{m}}{\\var{mini}}$ für die Mädchen und $\\binom{\\var{b}}{\\var{mini}}$ für die Burschen, diese beiden Zahlen sind zu multiplizieren (Entscheidungen sind keine Alternativen und hängen nicht voneinander ab), was $\\var{b_result}$ ergibt.
\n(c) Es gibt 1 Möglichkeit, alle Mädchen auszuwählen, diese ist dann noch mit den insgesamt (alle Teilmengen) $2^{\\var{b}}=\\var{c_result}$ Möglichkeiten zu multiplizieren, $0,1,2,\\ldots \\var{b}$ Burschen auszuwählen.
\n(d) Genau die Hälfte aller Teilmengen enthält weniger als $\\var{(sum+1)/2}$, genau die Hälfte mindestens $\\var{(sum+1)/2}$ Kinder. Die Anzahl aller Teilmengen einer $\\var{sum}$-elementigen Menge ist $2^{\\var{sum}}$, die Hälfte davon ist $2^{\\var{sum-1}}=\\var{d_result}$.
", "rulesets": {}, "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "sum-b ", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3..6)", "description": "", "templateType": "anything"}, "b_result": {"name": "b_result", "group": "Ungrouped variables", "definition": "combination(m,mini)*combination(b,mini)", "description": "", "templateType": "anything"}, "a_result": {"name": "a_result", "group": "Ungrouped variables", "definition": "combination(sum,(sum+1)/2)", "description": "", "templateType": "anything"}, "c_result": {"name": "c_result", "group": "Ungrouped variables", "definition": "2^b", "description": "", "templateType": "anything"}, "d_result": {"name": "d_result", "group": "Ungrouped variables", "definition": "2^(sum-1)", "description": "", "templateType": "anything"}, "sum": {"name": "sum", "group": "Ungrouped variables", "definition": "2*random(5..7)+ 1", "description": "", "templateType": "anything"}, "half": {"name": "half", "group": "Ungrouped variables", "definition": " (sum+1)/2 ", "description": "", "templateType": "anything"}, "mini": {"name": "mini", "group": "Unnamed group", "definition": "min(b,m)-1", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["b", "m", "b_result", "a_result", "c_result", "d_result", "sum", "half"], "variable_groups": [{"name": "Unnamed group", "variables": ["mini"]}], "functions": {}, "preamble": {"js": "", "css": ".copyright-footer{\n display:none;}"}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Wie viele Teilmengen von $K$ enthalten genau $\\var{(sum+1)/2}$ Kinder?
\n", "minValue": "a_result", "maxValue": "a_result", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["eu", "plain-eu"], "correctAnswerStyle": "plain-eu"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
Wie viele Teilmengen von $K$ enthalten genau $\\var{mini}$ Mädchen und genau $\\var{mini}$ Burschen?
", "minValue": "b_result", "maxValue": "b_result", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["eu", "plain-eu"], "correctAnswerStyle": "plain-eu"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Wie viele Teilmengen von $K$ enthalten alle $\\var{m}$ Mädchen?
", "minValue": "c_result", "maxValue": "c_result", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["eu", "plain-eu"], "correctAnswerStyle": "plain-eu"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Wie viele Teilmengen von $K$ enthalten mindestens $\\var{(sum+1)/2}$ Kinder?
\n", "minValue": "d_result", "maxValue": "d_result", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["eu", "plain-eu"], "correctAnswerStyle": "plain-eu"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "navigation": {"allowregen": false, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": false, "showresultspage": "oncompletion", "navigatemode": "menu", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "type": "exam", "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}], "extensions": ["stats"], "custom_part_types": [], "resources": []}