// Numbas version: exam_results_page_options {"name": "EEE8120 Formative Assessment", "metadata": {"description": "

EEE8120 Formative Assessment

", "licence": "Creative Commons Attribution 4.0 International"}, "duration": 7200, "percentPass": "50", "showQuestionGroupNames": false, "showstudentname": false, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "questions": [{"name": "Cellular concepts", "extensions": [], "custom_part_types": [], "resources": [["question-resources/figure1.png", "/srv/numbas/media/question-resources/figure1.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Paul Anthony Haigh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9407/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

In NUMBAS, to insert the equation $A = BC + \\frac{\\sqrt{D}}{E^2}$, the correct format is as follows: A = B*C + sqrt(D)/E^2. Please make a note of this.

\n

\n

A cellular system that comprises of hexagonal cells with radius is shown in Figure 1.

", "advice": "

Part A:

\n

The adjacent side of the right-angled triangle has a length of $i_hd\\sqrt{3}+j_hd\\sqrt{3}\\cos{(60^\\circ)}$ and the opposite side has a length of $j_hd\\sqrt{3}\\sin{(60^\\circ)}$.

\n

Therefore:

\n

$U=\\sqrt{(i_hd\\sqrt{3}+j_hd\\sqrt{3}\\cos{(60^\\circ)})^2+(j_hd\\sqrt{3}\\sin{(60^\\circ)})^2}$

\n

$U=\\sqrt{3i_h^2d^2+3i_hj_hd^2+3j_h^2d^2(\\cos^2{(60^\\circ)}+\\sin^2{(60^\\circ)})}$

\n

$U=\\sqrt{3}\\sqrt{i_h^2+i_hj_h+j_h^2}$

\n

\n

Part B:

\n

If $K=i_h^2+i_hj_h+j_h^2$ and $U=3\\sqrt{d}\\sqrt{i_h^2+i_hj_h+j_h^2}$

\n

$U=d\\sqrt{3K}$

\n

$U/d=\\sqrt{3K}$

\n

", "rulesets": {}, "variables": {"U": {"name": "U", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "i_h": {"name": "i_h", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "j_h": {"name": "j_h", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["U", "d", "i_h", "j_h"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Starting from the original cell, the destination cell is reached by moving $i_h$ cells vertically, rotating $60^\\circ$, and then moving $j_h$ cells in this direction

\n

If the distance between neighbouring cell centres is $d\\sqrt{3}$, derive the distance $U$ between the source and destination cell in terms of $i_h$ and $j_h$.

\n

Answer here: [[0]]

\n

\n

\"Figure1\"/

\n

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "d*sqrt(3)*sqrt(i_h^2+i_h*j_h+j_h^2)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "d", "value": ""}, {"name": "i_h", "value": ""}, {"name": "j_h", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given that the number of cells in a cluster, $K$, is defined as $K=i_h^2+i_hj_h+j_h^2$, derive an expression for the co-channel reuse distance $U/d$ in terms of $K$. 

\n

Answer here: [[0]]

\n

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "GAP1", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "U/d=sqrt(3*K)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "d", "value": ""}, {"name": "k", "value": ""}, {"name": "u", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SIR questions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Paul Anthony Haigh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9407/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

The path-loss model for the received power at a mobile user in a cell is given by:

\n

$P_{RX}=P_{TX}d^{-v}$

\n

where $P_{RX}$ is received power, $P_{TX}$ is the transmitted power from all base stations, $d$ is the distance from the transmitter to the receiver and $v$ is the path-loss exponent.

", "advice": "

Part A:

\n

Total signal power:

\n

$S=P_{TX}d^{-v}$

\n

Total received power:

\n

$I=\\sum^{M}_{i=1}P_{TX}d_i^{-v}=MP_{TX}X^{-v}$

\n

Therefore $S/I$:

\n

$\\frac{S}{I}=\\frac{P_{TX}d^{-v}}{MP_{TX}X^{-v}}=\\frac{1}{M}\\left(\\frac{X}{d}\\right)^{-4}=\\frac{1}{M}\\left(\\frac{X}{d}\\right)^{-4}$

\n

Part B:

\n

$\\frac{S}{I}_{linear}=10^{\\frac{SNR_{dB}}{10}}=57.54$

\n

$\\frac{S}{I}=\\frac{1}{M}\\left(\\frac{X}{d}\\right)^{-4}$

\n

$\\frac{X}{d}\\longrightarrow$ co-channel re-use distance $\\longrightarrow\\frac{X}{d}=\\sqrt{3K}$

\n

$\\frac{S}{I}=\\frac{1}{M}\\left(\\sqrt{3K}\\right)^v=\\frac{1}{M}\\left(3K\\right)^{\\frac{2}{v}}$

\n

Rearranging for $K$:

\n

$K=\\frac{1}{3}\\left(\\frac{MS}{I}\\right)^{\\frac{2}{v}}=\\frac{1}{3}\\left(6\\cdot57.54\\right)^{0.5}=6.19$ clusters, therefore minimum cluster size, $K=7$.

", "rulesets": {}, "variables": {"K": {"name": "K", "group": "Ungrouped variables", "definition": "7", "description": "", "templateType": "anything"}, "SIR": {"name": "SIR", "group": "Ungrouped variables", "definition": "17.6", "description": "", "templateType": "anything"}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "4", "description": "", "templateType": "anything"}, "M": {"name": "M", "group": "Ungrouped variables", "definition": "6", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["K", "SIR", "v", "M"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If a mobile user also receives signals from $M$ interferers that are all at a distance $X$ from the mobile user, derive the signal-to-interference ratio ($\\frac{S}{I}$) of the mobile user, given a distance $d$ and that all interferers have the same transmission power, $P_{TX}$, and path-loss exponent, $v$.

\n

\n

SIR=[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "SIR", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(1/M)(X/d)^v", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "d", "value": ""}, {"name": "m", "value": ""}, {"name": "v", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

For satisfactory performance of an arbitrary cellular system, a signal-to-interference ratio of $17.6$ dB is required. Find the minimum cluster size, $K$, needed to achieve this, considering $v=4$ and there are $M=6$ equidistant interferers.

\n

K=[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "7", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Capacity questions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Paul Anthony Haigh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9407/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Some general questions on capacity in FDMA, TDMA and CDMA

", "advice": "

Part A:

\n

$\\frac{S}{I}_{linear}=10^{\\frac{27}{10}}=501.19$ 

\n

$C_{FDMA}=\\frac{B_T}{\\frac{B_c}{3}\\left(M\\left(\\frac{S}{I}_{min}\\right)\\right)^{\\frac{2}{v}}}$

\n

$C_{FDMA}=\\frac{B_T}{\\frac{B_c}{3}\\left(M\\left(\\frac{S}{I}_{min}\\right)\\right)^{\\frac{2}{v}}}=\\frac{20,000,000}{\\frac{10,000}{3}\\left(M\\left(6\\cdot501.19\\right)\\right)^{0.5}}=109.41$ channels/cell

\n

109.41 channels is not possible, therefore $C_{FDMA}=109$channels/cell

\n

\n

Part B:

\n

$C_{FDMA}=\\frac{B_T}{\\frac{B_c}{3}\\left(M\\left(\\frac{S}{I}_{min}\\right)\\right)^{\\frac{2}{v}}}$

\n

Rearrange for $\\frac{S}{I}_{min}$:

\n

$\\frac{S}{I}_{min}=\\frac{1}{M}\\left(\\frac{B_T}{\\frac{B_c}{3}C}\\right)^\\frac{v}{2}=31.56$

\n

$\\frac{S}{I}_{dB}=10\\log_{10}\\left(31.56\\right)\\approx15$ dB

\n

\n

Part C:

\n

$\\frac{S}{I}=\\frac{S}{I_s+I_a}=\\frac{S}{\\left(M-1\\right)S+I)a}=\\frac{1}{(M-1)+\\frac{I_a}{S}}$

\n

$I_a$ is negligible, therefore $I=I_s$:

\n

$\\frac{S}{I}=\\frac{1}{(M-1)}$

\n

$M=C_{CDMA}=\\frac{I}{S}+1$

\n

\n

Part D:

\n

Data rate: $R_b=1$ Mb/s

\n

Bit period: $T_b=1/R_b=1\\mu s$

\n

One slot duration: $1500\\cdot T_b=1500\\cdot 10^{-6}

\n

Total slot time = $16\\cdot 0.0015=24\\mu s$

\n

", "rulesets": {}, "variables": {"C_FDMA": {"name": "C_FDMA", "group": "Ungrouped variables", "definition": "109", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["C_FDMA"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The capacity of a cellular system employing FDMA is defined as

\n

$C_{FDMA}=\\frac{B_T}{\\frac{B_c}{3}\\left(M\\left(\\frac{S}{I}_{min}\\right)\\right)^{\\frac{2}{v}}}$

\n

where $B_T$ is the total bandwidth, $B_c$ is the channel bandwidth, $M$ is the number of interferers, is the minimum signal-to-interference ratio and $v=4$ is the path-loss exponent.

\n

\n

A cellular system has a total bandwidth of 20 MHz and each channel has a bandwidth of 10 kHz. If the mobile user can tolerate a minimum signal-to-interference ratio of 27 dB and there are 6 interferers effecting the mobile user, determine the capacity of the system.

\n

$C_{FDMA}=$[[0]] channels/cell

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "C_FDMA", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "109", "maxValue": "109", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

An equivalent cellular system employing FDMA occupies the same total bandwidth as the cellular system in part a), but each channel has a bandwidth of 40 kHz. Determine the minimum signal-to-interference ratio that is required for this system to achieve the same capacity as the system in part a).

\n

$\\frac{S}{I}_{dB}=$[[0]] dB

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "14.99", "maxValue": "14.99", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "15", "maxValue": "15", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The capacity of a CDMA cellular system, $C_{CDMA}$ is dependent on the number of users, $M$, in each cell.

\n

\n

If each user in the cell is transmitting at $S$ Watts and intercell interference $I_a$ is assumed to be neglible, then derive the overall capacity of the system.

\n

$C_{CDMA}=$[[0]]

\n

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "(I)/S+1", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "s", "value": ""}]}], "answer": "(I_S)/S+1", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "i_s", "value": ""}, {"name": "s", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A TDMA frame comprises 16 time slots, where each time slot contains 1500 bits. The data is transmitted as a rate of 1 Mbps.

\n

Determine the duration of the frame: [[0]] ms

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "24", "maxValue": "24", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "preventifunattempted", "message": "

Enter N/A if unable to answer

"}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "warn", "message": "

Timeout

"}, "timedwarning": {"action": "warn", "message": "

Five minutes to go

"}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "

The formative assessment to EEE8120. You will have 120 minutes to attempt all questions. Once the timer expires, questions will no longer be answerable.

", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": []}, "contributors": [{"name": "Paul Anthony Haigh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9407/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/figure1.png", "/srv/numbas/media/question-resources/figure1.png"]]}