// Numbas version: finer_feedback_settings {"name": "ACC1012/1053 2020 CBA 2", "metadata": {"description": "

Covers differentiation and critical points, data types and sampling, frequencies, histograms and stem and leaf plots

", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", ""], "questions": [{"name": "Find coordinates of stationary points of polynomials - ACC1012", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Anthony Youd", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5/"}], "showQuestionGroupNames": false, "metadata": {"description": "

Finding the coordinates and determining the nature of the stationary points on a polynomial function

", "licence": "Creative Commons Attribution 4.0 International", "notes": ""}, "question_groups": [{"pickQuestions": 0, "pickingStrategy": "all-ordered", "name": "", "questions": []}], "functions": {}, "variables": {"y13": {"description": "", "name": "y13", "group": "Ungrouped variables", "definition": "(x13^3)/3-(x13+x23)*x13^2/2+x13*x23*x13+c03", "templateType": "anything"}, "x43": {"description": "", "name": "x43", "group": "Ungrouped variables", "definition": "if(y13For the following function:

\n

\\[ \\simplify{ y = 2x^3-{3*(x1+x2)}x^2+{x1*x2*6}x+{c0} } \\]

\n

Determine the coordinates and the nature of the stationary points.

\n

Minimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$

\n

Enter fractions in their simplest form.

"}, {"type": "gapfill", "showCorrectAnswer": true, "scripts": {}, "gaps": [{"checkingaccuracy": 0.001, "vsetrangepoints": 5, "expectedvariablenames": [], "marks": 1, "vsetrange": [0, 1], "checkvariablenames": false, "answer": "{x32}", "showCorrectAnswer": true, "answersimplification": "all,fractionNumbers", "scripts": {}, "showpreview": false, "type": "jme", "checkingtype": "absdiff"}, {"checkingaccuracy": 0.001, "vsetrangepoints": 5, "expectedvariablenames": [], "marks": 1, "vsetrange": [0, 1], "checkvariablenames": false, "answer": "{y32}", "showCorrectAnswer": true, "answersimplification": "all,fractionNumbers", "scripts": {}, "showpreview": false, "type": "jme", "checkingtype": "absdiff"}, {"checkingaccuracy": 0.001, "vsetrangepoints": 5, "expectedvariablenames": [], "marks": 1, "vsetrange": [0, 1], "checkvariablenames": false, "answer": "{x42}", "showCorrectAnswer": true, "answersimplification": "all,fractionNumbers", "scripts": {}, "showpreview": false, "type": "jme", "checkingtype": "absdiff"}, {"checkingaccuracy": 0.001, "vsetrangepoints": 5, "expectedvariablenames": [], "marks": 1, "vsetrange": [0, 1], "checkvariablenames": false, "answer": "{y42}", "showCorrectAnswer": true, "answersimplification": "all,fractionNumbers", "scripts": {}, "showpreview": false, "type": "jme", "checkingtype": "absdiff"}], "marks": 0, "prompt": "

For the following function:

\n

\\[ \\simplify{y = 2x^3-3{(x12+x22)}x^2+6{x12*x22}x+{c02}} \\]

\n

Determine the coordinates and the nature of the stationary points.

\n

Minimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$

\n

Enter fractions in their simplest form.

"}, {"type": "gapfill", "showCorrectAnswer": true, "scripts": {}, "gaps": [{"checkingaccuracy": 0.001, "vsetrangepoints": 5, "expectedvariablenames": [], "marks": 1, "vsetrange": [0, 1], "checkvariablenames": false, "answer": "{x33}", "showCorrectAnswer": true, "answersimplification": "all,fractionNumbers", "scripts": {}, "showpreview": false, "type": "jme", "checkingtype": "absdiff"}, {"checkingaccuracy": 0.001, "vsetrangepoints": 5, "expectedvariablenames": [], "marks": 1, "vsetrange": [0, 1], "checkvariablenames": false, "answer": "{y33}", "showCorrectAnswer": true, "answersimplification": "all,fractionNumbers", "scripts": {}, "showpreview": false, "type": "jme", "checkingtype": "absdiff"}, {"checkingaccuracy": 0.001, "vsetrangepoints": 5, "expectedvariablenames": [], "marks": 1, "vsetrange": [0, 1], "checkvariablenames": false, "answer": "{x43}", "showCorrectAnswer": true, "answersimplification": "all,fractionNumbers", "scripts": {}, "showpreview": false, "type": "jme", "checkingtype": "absdiff"}, {"checkingaccuracy": 0.001, "vsetrangepoints": 5, "expectedvariablenames": [], "marks": 1, "vsetrange": [0, 1], "checkvariablenames": false, "answer": "{y43}", "showCorrectAnswer": true, "answersimplification": "all,fractionNumbers", "scripts": {}, "showpreview": false, "type": "jme", "checkingtype": "absdiff"}], "marks": 0, "prompt": "

For the following function:

\n

\\[ \\simplify[All,fractionNumbers]{y = {1}/{3}x^3-{(x13+x23)}/{2}x^2+{x13*x23}x+{c03}} \\]

\n

Determine the coordinates and the nature of the stationary points.

\n

Minimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$

\n

Enter fractions in their simplest form.

"}], "ungrouped_variables": ["y1", "y0", "y3", "y2", "y4", "y02", "y03", "x1", "x43", "x42", "y42", "y43", "x03", "x02", "y22", "y23", "x23", "x22", "x2", "x3", "x0", "c0", "c02", "x4", "x32", "x33", "x13", "y33", "y32", "x12", "c03", "y13", "y12"], "tags": ["ACC1012", "acc1012", "checked2015"], "advice": ""}, {"name": "Find stationary point of a curve and determine its nature - ACC1012", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Anthony Youd", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5/"}], "functions": {}, "ungrouped_variables": ["a1", "sx1", "m", "sy1", "q", "sy2", "sx2", "a2", "b1", "b2", "c2", "c1"], "tags": ["ACC1012", "acc1012", "checked2015"], "advice": "

a)

\n

$\\dfrac{\\mathrm{d}y}{\\mathrm{d}x} = \\simplify{{2a1}x+{b1}}$.

\n

To find the $x$-coordinate of the stationary point, solve $\\frac{\\mathrm{d}y}{\\mathrm{d}x} = 0$ for $x$:

\n

\\[ \\begin{align} \\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\simplify{{2a1}x + {b1}} &= 0 \\\\ x &= \\simplify[all,fractionNumbers]{{sx1}} \\end{align} \\]

\n

Find the $y$-coordinate by substituting this value of $x$ into the definition of $y(x)$:

\n

\\[\\begin{align} \\simplify[fractionnumbers]{y({sx1})} &= \\simplify[basic,fractionnumbers]{{a1}{sx1}^2+{b1}{sx1}+{c1}} \\\\ &= \\simplify[fractionnumbers]{{sy1}} \\end{align}\\]

\n

Finally, to determine the nature of the stationary point, look at $\\frac{\\mathrm{d}^2y}{\\mathrm{d}x^2}$ at $x = \\simplify[fractionnumbers]{{sx1}}$.

\n

\\[ \\frac{\\mathrm{d}^2y}{\\mathrm{d}x^2} = \\simplify{{2*a1}} \\]

\n

This is positive, so the stationary point is a minimum.

\n

b)

\n

$\\dfrac{\\mathrm{d}z}{\\mathrm{d}x} = \\simplify{{2a2}x+{b2}}$.

\n

To find the $x$-coordinate of the stationary point, solve $\\frac{\\mathrm{d}z}{\\mathrm{d}x} = 0$ for $x$:

\n

\\[ \\begin{align} \\frac{\\mathrm{d}z}{\\mathrm{d}x} = \\simplify{{2a2}x + {b2}} &= 0 \\\\ x &= \\simplify[all,fractionNumbers]{{sx2}} \\end{align} \\]

\n

Find the $y$-coordinate by substituting this value of $x$ into the definition of $z(x)$:

\n

\\[\\begin{align} \\simplify[fractionnumbers]{z({sx1})} &= \\simplify[basic,fractionnumbers]{{a2}{sx2}^2+{b2}{sx2}+{c2}} \\\\ &= \\simplify[fractionnumbers]{{sy2}} \\end{align}\\]

\n

Finally, to determine the nature of the stationary point, look at $\\frac{\\mathrm{d}^2z}{\\mathrm{d}x^2}$ at $x = \\simplify[fractionnumbers]{{sx2}}$.

\n

\\[ \\frac{\\mathrm{d}^2z}{\\mathrm{d}x^2} = \\simplify{{2*a2}} \\]

\n

This is negative, so the stationary point is a maximum.

\n

c)

\n

$\\dfrac{\\mathrm{d}t}{\\mathrm{d}x} = \\simplify{{3m}x^2}$.

\n

To find the $x$-coordinate of the stationary point, solve $\\frac{\\mathrm{d}t}{\\mathrm{d}x} = 0$ for $x$:

\n

\\[ \\begin{align} \\frac{\\mathrm{d}t}{\\mathrm{d}x} = \\simplify{{3m}x^2} &= 0 \\\\ x &= 0 \\end{align} \\]

\n

Find the $y$-coordinate by substituting this value of $x$ into the definition of $t(x)$:

\n

\\[\\begin{align} z(0) &= \\simplify[basic,fractionnumbers]{{m}*0^3 + {q}} \\\\ &= \\var{q} \\end{align}\\]

\n

Finally, to determine the nature of the stationary point, look at $\\frac{\\mathrm{d}^2t}{\\mathrm{d}x^2}$ at $x = 0$.

\n

\\[ \\frac{\\mathrm{d}^2t}{\\mathrm{d}x^2} = \\simplify{{6m}x} \\]

\n

\\[ \\left.\\frac{\\mathrm{d}^2t}{\\mathrm{d}x^2} \\right\\rvert_{x=0} = \\var{6m} \\times 0 = 0 \\]

\n

This is zero, so the stationary point is a point of inflection.

", "rulesets": {}, "parts": [{"prompt": "

Let $y = \\simplify{{a1}x^2 + {b1}x + {c1}}$.

\n

$\\dfrac{\\mathrm{d}y}{\\mathrm{d}x} = $ [[0]]

\n

Enter the coordinates of the stationary point of $y$: $\\big($ [[1]] $, $ [[2]] $\\big)$

\n

$\\dfrac{\\mathrm{d}^2y}{\\mathrm{d}x^2} = $ [[3]]

\n

What is the nature of the stationary point of $y$?

\n

[[4]]

", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "answer": "2*{a1}*x+{b1}", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": false, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "fractionnumbers", "scripts": {}, "marks": 1, "answer": "{sx1}", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": false, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "fractionnumbers", "scripts": {}, "marks": 1, "answer": "{sy1}", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "answer": "{2a1}", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"distractors": ["", "", ""], "matrix": [0, 1, 0], "shuffleChoices": false, "scripts": {}, "choices": ["

Maximum

", "

Minimum

", "

Point of inflection

"], "displayType": "radiogroup", "showCorrectAnswer": true, "minMarks": 0, "marks": 0, "displayColumns": 0, "type": "1_n_2", "maxMarks": 0}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "

Let $z = \\simplify{{a2}x^2+{b2}x+{c2}}$.

\n

$\\dfrac{\\mathrm{d}z}{\\mathrm{d}x} = $ [[0]]

\n

Enter the coordinates of the stationary point of $z$: $\\big($ [[1]] $, $ [[2]] $\\big)$

\n

$\\dfrac{\\mathrm{d}^2z}{\\mathrm{d}x^2} = $ [[3]]

\n

What is the nature of the stationary point of $z$?

\n

[[4]]

", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "answer": "2*{a2}x+{b2}", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": false, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "fractionnumbers", "scripts": {}, "marks": 1, "answer": "{sx2}", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": false, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "fractionnumbers", "scripts": {}, "marks": 1, "answer": "{sy2}", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "answer": "2{a2}", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"distractors": ["", "", ""], "matrix": [1, 0, 0], "shuffleChoices": false, "scripts": {}, "choices": ["

Maximum

", "

Minimum

", "

Point of inflection

"], "displayType": "radiogroup", "showCorrectAnswer": true, "minMarks": 0, "marks": 0, "displayColumns": 0, "type": "1_n_2", "maxMarks": 0}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "

Let $t = \\var{m}x^3+\\var{q}$.

\n

$\\dfrac{\\mathrm{d}t}{\\mathrm{d}x} = $ [[0]]

\n

Enter the coordinates of the stationary point of $t$: $\\big($ [[1]] $, $ [[2]] $\\big)$

\n

$\\dfrac{\\mathrm{d}^2t}{\\mathrm{d}x^2} = $ [[3]]

\n

What is the nature of the stationary point of $t$?

\n

[[4]]

", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "answer": "3*{m}*x^2", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": false, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "fractionnumbers", "scripts": {}, "marks": 1, "answer": "0", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": false, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "fractionnumbers", "scripts": {}, "marks": 1, "answer": "{q}", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "answer": "6*{m}*x", "checkingtype": "absdiff", "checkvariablenames": false, "vsetrange": [0, 1]}, {"distractors": ["", "", ""], "matrix": [0, 0, 1], "shuffleChoices": false, "scripts": {}, "choices": ["

Maximum

", "

Minimum

", "

Point of inflection

"], "displayType": "radiogroup", "showCorrectAnswer": true, "minMarks": 0, "marks": 0, "displayColumns": 0, "type": "1_n_2", "maxMarks": 0}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "

For the following, find the stationary point and determine its nature. For your answers, where appropriate, write your solutions as fractions, NOT decimals, and cancel down where possible.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a1": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "sx1": {"definition": "-b1/(2*a1)", "templateType": "anything", "group": "Ungrouped variables", "name": "sx1", "description": ""}, "m": {"definition": "random(2,3,4)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}, "sy1": {"definition": "a1*(sx1^2)+b1*sx1+c1", "templateType": "anything", "group": "Ungrouped variables", "name": "sy1", "description": ""}, "q": {"definition": "random(-10..10 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "q", "description": ""}, "sy2": {"definition": "a2*(sx2^2)+b2*sx2+c2", "templateType": "anything", "group": "Ungrouped variables", "name": "sy2", "description": ""}, "sx2": {"definition": "-b2/(2*a2)", "templateType": "anything", "group": "Ungrouped variables", "name": "sx2", "description": ""}, "a2": {"definition": "random(-5..-2)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}, "b1": {"definition": "random(-6..6 except (-1..1))", "templateType": "anything", "group": "Ungrouped variables", "name": "b1", "description": ""}, "b2": {"definition": "random(-6..6 except (-1..1))", "templateType": "anything", "group": "Ungrouped variables", "name": "b2", "description": ""}, "c2": {"definition": "random(-10..10 except (-1..1))", "templateType": "anything", "group": "Ungrouped variables", "name": "c2", "description": ""}, "c1": {"definition": "random(-10..10 except (-1..1))", "templateType": "anything", "group": "Ungrouped variables", "name": "c1", "description": ""}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Determine if variables are qualitative or quantitative - ACC1012", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Anthony Youd", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5/"}], "showQuestionGroupNames": false, "metadata": {"description": "

Choosing whether given random variables are qualitiative or quantitative.

", "licence": "Creative Commons Attribution 4.0 International", "notes": ""}, "question_groups": [{"pickQuestions": 0, "pickingStrategy": "all-ordered", "name": "", "questions": []}], "functions": {}, "variables": {"ind1": {"description": "", "name": "ind1", "group": "Ungrouped variables", "definition": "2*vector(ind)-vector(1,1,1)", "templateType": "anything"}, "quant2": {"description": "", "name": "quant2", "group": "Ungrouped variables", "definition": "[\"The number of people requiring a special in-flight meal\",\"The average volume of bottles of wine imported from South America\",\"Salaries of Newcastle University graduates six months after graduation\",\"The distance travelled by taxis for a particular cab firm every day\",\"Total annual sales for a large American departmental store\",\"The total cost of a student's text books for this semester\"]", "templateType": "anything"}, "qual2": {"description": "", "name": "qual2", "group": "Ungrouped variables", "definition": "[\"Ice cream flavour preferred by children\",\"Brand of sportswear preferred by athletes\",\"Favourite type of film by UK cinema-goers\",\"Mobile phone price-plan\",\"Shape of swimming pools in local authority-run leisure centres\"]", "templateType": "anything"}, "qual": {"description": "", "name": "qual", "group": "Ungrouped variables", "definition": "qual1+qual2", "templateType": "anything"}, "qual1": {"description": "", "name": "qual1", "group": "Ungrouped variables", "definition": "[\"Types of PC used by small businesses in the north-east\",\"Marital status of questionnaire respondents\",\"Month of the year in which small shops record their highest sales\",\"Type of tenure for those in the licensed trade business\",\"Subjects studied at A level by students in this class\"]", "templateType": "anything"}, "ch1": {"description": "", "name": "ch1", "group": "Ungrouped variables", "definition": "switch(ind[0]=0,random(qual),random(quant))", "templateType": "anything"}, "cind": {"description": "", "name": "cind", "group": "Ungrouped variables", "definition": "-1*ind1", "templateType": "anything"}, "ch3": {"description": "", "name": "ch3", "group": "Ungrouped variables", "definition": "switch(ind[2]=0,random(qual except [ch1,ch2]),random(quant except [ch1,ch2]))", "templateType": "anything"}, "m": {"description": "", "name": "m", "group": "Ungrouped variables", "definition": "transpose(matrix(list(cind),list(ind1)))", "templateType": "anything"}, "ch2": {"description": "", "name": "ch2", "group": "Ungrouped variables", "definition": "switch(ind[1]=0,random(qual except ch1),random(quant except ch1))", "templateType": "anything"}, "quant1": {"description": "", "name": "quant1", "group": "Ungrouped variables", "definition": "[\"The number of orders received by a catering company\",\"The height of students taking Statistics courses at Newcastle this year\", \"Your quarterly gas bill\", \"The time spent on hold at a credit call centre\",\"The average shipping time for orders placed with a TV shopping channel\",\"The annual electricity bill for a large UK Supermarket\"]", "templateType": "anything"}, "quant": {"description": "", "name": "quant", "group": "Ungrouped variables", "definition": "quant1+quant2", "templateType": "anything"}, "ind": {"description": "", "name": "ind", "group": "Ungrouped variables", "definition": "random([[0,0,0],[1,0,0],[0,1,0],[0,0,1],[0,1,1],[1,0,1],[1,1,0],[1,1,1]])", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "type": "question", "statement": "\n

State whether the following variables are Qualitative or Quantitative

\n

 

\n\n", "rulesets": {}, "preamble": {"css": "", "js": ""}, "parts": [{"answers": ["Qualitative", "Quantitative"], "shuffleAnswers": true, "showCorrectAnswer": true, "maxMarks": 0, "minMarks": 0, "minAnswers": 0, "matrix": "m", "marks": 0, "layout": {"type": "all", "expression": ""}, "type": "m_n_x", "choices": ["{ch1}", "{ch2}", "{ch3}"], "displayType": "radiogroup", "warningType": "none", "scripts": {}, "maxAnswers": 0, "shuffleChoices": true}], "ungrouped_variables": ["quant1", "quant2", "qual2", "cind", "qual1", "m", "ch1", "ch2", "ch3", "quant", "ind", "ind1", "qual"], "tags": ["ACC1012", "acc1012", "checked2015", "qualitative variables", "quantitative variables", "random variables", "statistics"], "advice": ""}, {"name": "Classify methods of sampling - ACC1012", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Anthony Youd", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5/"}], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"answers": ["Simple Random Samping", "Stratified Sampling", "Systematic Samping", "Judgmental Sampling"], "unitTests": [], "minMarks": 0, "customMarkingAlgorithm": "", "minAnswers": 0, "matrix": [[1, -1, -1, -1], [-1, 1, -1, -1], [-1, -1, 1, -1], [-1, -1, -1, 1]], "choices": ["{ch1}", "{ch2}", "{ch3}", "{ch4}"], "displayType": "radiogroup", "warningType": "none", "scripts": {}, "showCellAnswerState": true, "variableReplacementStrategy": "originalfirst", "shuffleChoices": true, "shuffleAnswers": true, "showCorrectAnswer": true, "maxMarks": 4, "variableReplacements": [], "maxAnswers": 0, "marks": 0, "layout": {"type": "all", "expression": ""}, "type": "m_n_x", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "

Identify each of the following scenarios as one of the following:

\n\n

Note that 1 mark will be taken off for each incorrect answer, however the least mark for this part of the question is 0.

"}, {"answers": ["Quasi-Random", "Non-random", "Random"], "unitTests": [], "minMarks": 0, "customMarkingAlgorithm": "", "minAnswers": 0, "matrix": [[-1, -1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]], "choices": ["{ch1}", "{ch2}", "{ch3}", "{ch4}"], "displayType": "radiogroup", "warningType": "none", "scripts": {}, "showCellAnswerState": true, "variableReplacementStrategy": "originalfirst", "shuffleChoices": true, "shuffleAnswers": true, "showCorrectAnswer": true, "maxMarks": 4, "variableReplacements": [], "maxAnswers": 0, "marks": 0, "layout": {"type": "all", "expression": ""}, "type": "m_n_x", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "\n

For each choice, state whether the form of the sampling described is random, quasi-random or non-random.

\n

As before, you will lose 1 mark for every incorrect answer, however the least mark for this part of the question is 0.

\n \n"}], "functions": {}, "variables": {"a": {"description": "", "name": "a", "group": "Ungrouped variables", "definition": "[\"Under this form of sampling, if there are five hundred elements in the population, each element has a one-in-five hundred chance of being selected. \",\"One advantage of this form of sampling is that every element in the population has an equal chance of being selected.\",\"We are interested in the employment status of 25-40 year olds in South Tyneside. The names of all such people are obtained from the electoral roll and put into a hat; one hundred of these are then selected without replacement.\",\"One of six branches of a large retail outlet is to be selected for an audit. Each outlet is assigned a number from one to six, and then a fair, six-sided die is rolled to select the branch which will be audited.\"]", "templateType": "anything"}, "ch3": {"description": "", "name": "ch3", "group": "Ungrouped variables", "definition": "random(c)", "templateType": "anything"}, "c": {"description": "", "name": "c", "group": "Ungrouped variables", "definition": "[\"The first item to be checked for faults on a production line is chosen at random, thereafter, every 100th item is checked.\",\"A credit card company wants to investigate the spending habits if its customers. From its lists, the first customer is selected at random; thereafter, every 25th customer is selected.\",\"In an inquiry on heating costs, we decide to sample every 4th house on the street.\",\"To sample 1% of its target population, consisting of 5000 members, a market research company chooses the first member at random; after that, every 100th member is also selected.\",\"This form of sampling could produce an unrepresentative sample because of patterns in the sampling frame.\"]", "templateType": "anything"}, "ch4": {"description": "", "name": "ch4", "group": "Ungrouped variables", "definition": "random(d)", "templateType": "anything"}, "ch2": {"description": "", "name": "ch2", "group": "Ungrouped variables", "definition": "random(b)", "templateType": "anything"}, "d": {"description": "", "name": "d", "group": "Ungrouped variables", "definition": "[\"A company director believes she knows what characteristics make up the target population for a new product her company intends to launch. The company's team of market researchers check the viability of this new product by eliciting the opinions of the target population as specified by the director.\",\"Specific members of a population are sampled because of their known honesty and integrity.\",\"This form of sampling can provide a coherent and focussed sample by asking people with experience and relevant knowledge to provide their opinions.\",\"With this form of sampling, the researcher decides what he or she constitutes a representative sample.\"]", "templateType": "anything"}, "ch1": {"description": "", "name": "ch1", "group": "Ungrouped variables", "definition": "random(a)", "templateType": "anything"}, "b": {"description": "", "name": "b", "group": "Ungrouped variables", "definition": "[\"A local bus company is planning a new route to serve four housing estates. Random samples of households are taken from each estate and sample members are asked to rate on a scale of 1 (strongly opposed) to 5 (strongly in favour) their reaction to the proposed service.\",\"A company has three divisions, and auditors are attempting to estimate the total amounts of the company's accounts receivable. Simple random samples of these accounts were taken for each of the three divisions.\",\"A company has three divisions, and auditors are attempting to estimate the total amounts of the company's accounts receivable. Simple random samples of these accounts were taken for each of the three divisions.\",\"This form of sampling reflects the major groupings within a population.\"]", "templateType": "anything"}}, "preamble": {"css": "", "js": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question", "statement": "

Answer the following questions on the sampling methods used in these situations.

", "rulesets": {}, "variable_groups": [], "ungrouped_variables": ["a", "c", "b", "d", "ch1", "ch2", "ch3", "ch4"], "tags": ["ACC1012", "acc1012", "checked2015"], "advice": ""}, {"name": "Find relative percentage frequencies - ACC1012", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Anthony Youd", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5/"}], "showQuestionGroupNames": false, "metadata": {"description": "

Given a table of the number of days in which sales were between £x1000 and £(x+1)1000 find the relative percentage frequencies of these volume of sales.

", "licence": "Creative Commons Attribution 4.0 International", "notes": ""}, "question_groups": [{"pickQuestions": 0, "pickingStrategy": "all-ordered", "name": "", "questions": []}], "functions": {"revsort": {"type": "list", "parameters": [["a", "list"]], "definition": "list(-1*vector(sort(list(-1*vector(a)))))", "language": "jme"}}, "variables": {"r": {"description": "", "name": "r", "group": "Ungrouped variables", "definition": "random(0..5)", "templateType": "anything"}, "things": {"description": "", "name": "things", "group": "Ungrouped variables", "definition": "'Sales'", "templateType": "anything"}, "units": {"description": "", "name": "units", "group": "Ungrouped variables", "definition": "'in thousands of pounds'", "templateType": "anything"}, "freqdays1": {"description": "", "name": "freqdays1", "group": "Ungrouped variables", "definition": "sort(repeat(random(2..50),n1))", "templateType": "anything"}, "s": {"description": "", "name": "s", "group": "Ungrouped variables", "definition": "random(5..15#5)", "templateType": "anything"}, "n1": {"description": "", "name": "n1", "group": "Ungrouped variables", "definition": "4", "templateType": "anything"}, "freqdays": {"description": "", "name": "freqdays", "group": "Ungrouped variables", "definition": "freqdays1+freqdays2", "templateType": "anything"}, "daysopen": {"description": "", "name": "daysopen", "group": "Ungrouped variables", "definition": "sum(norm1)", "templateType": "anything"}, "y": {"description": "", "name": "y", "group": "Ungrouped variables", "definition": "random(300..320)", "templateType": "anything"}, "a": {"description": "", "name": "a", "group": "Ungrouped variables", "definition": "map(s*x,x,0..7)", "templateType": "anything"}, "m": {"description": "", "name": "m", "group": "Ungrouped variables", "definition": "max(freqdays1)", "templateType": "anything"}, "num": {"description": "", "name": "num", "group": "Ungrouped variables", "definition": "'Number of days'", "templateType": "anything"}, "freqdays2": {"description": "", "name": "freqdays2", "group": "Ungrouped variables", "definition": "revsort(repeat(random(2..m-1),n1-1))", "templateType": "anything"}, "what": {"description": "", "name": "what", "group": "Ungrouped variables", "definition": "'daily sales'", "templateType": "anything"}, "norm1": {"description": "", "name": "norm1", "group": "Ungrouped variables", "definition": "map(round(x),x,list((y/sum(freqdays))*vector(freqdays)))", "templateType": "anything"}, "rel": {"description": "", "name": "rel", "group": "Ungrouped variables", "definition": "map(precround(100*norm1[x]/daysopen,1),x,0..2*n1-2)", "templateType": "anything"}, "forwhat": {"description": "", "name": "forwhat", "group": "Ungrouped variables", "definition": "'for a large retailer in '+random(2010,2011,2012)", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "type": "question", "statement": "\n

The following table shows {what}, $X$, {units} {forwhat}.

\n

Calculate the relative percentage frequencies (to one decimal place for all).

\n \n", "rulesets": {}, "preamble": {"css": "", "js": ""}, "parts": [{"type": "gapfill", "showCorrectAnswer": true, "scripts": {}, "gaps": [{"type": "numberentry", "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "rel[0]", "allowFractions": false, "scripts": {}, "correctAnswerFraction": false, "minValue": "rel[0]", "marks": 1}, {"type": "numberentry", "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "rel[1]", "allowFractions": false, "scripts": {}, "correctAnswerFraction": false, "minValue": "rel[1]", "marks": 1}, {"type": "numberentry", "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "rel[2]", "allowFractions": false, "scripts": {}, "correctAnswerFraction": false, "minValue": "rel[2]", "marks": 1}, {"type": "numberentry", "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "rel[3]", "allowFractions": false, "scripts": {}, "correctAnswerFraction": false, "minValue": "rel[3]", "marks": 1}, {"type": "numberentry", "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "rel[4]", "allowFractions": false, "scripts": {}, "correctAnswerFraction": false, "minValue": "rel[4]", "marks": 1}, {"type": "numberentry", "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "rel[5]", "allowFractions": false, "scripts": {}, "correctAnswerFraction": false, "minValue": "rel[5]", "marks": 1}, {"type": "numberentry", "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "rel[6]", "allowFractions": false, "scripts": {}, "correctAnswerFraction": false, "minValue": "rel[6]", "marks": 1}], "marks": 0, "prompt": "\n \n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
{things} {num} Relative Percentages
$\\var{a[0]}\\le X \\lt \\var{a[1]}$$\\var{norm1[0]}$[[0]]
$\\var{a[1]}\\le X \\lt \\var{a[2]}$$\\var{norm1[1]}$[[1]]
$\\var{a[2]}\\le X \\lt \\var{a[3]}$$\\var{norm1[2]}$[[2]]
$\\var{a[3]}\\le X \\lt \\var{a[4]}$$\\var{norm1[3]}$[[3]]
$\\var{a[4]}\\le X \\lt \\var{a[5]}$$\\var{norm1[4]}$[[4]]
$\\var{a[5]}\\le X \\lt \\var{a[6]}$$\\var{norm1[5]}$[[5]]
$\\var{a[6]}\\le X \\lt \\var{a[7]}$$\\var{norm1[6]}$[[6]]
\n \n"}], "ungrouped_variables": ["a", "what", "freqdays", "daysopen", "things", "m", "forwhat", "y", "s", "num", "rel", "freqdays1", "units", "n1", "freqdays2", "r", "norm1"], "tags": ["ACC1012", "acc1012", "checked2015", "frequencies", "percentages", "relative percentage frequencies", "statistics"], "advice": "\n

We show how to calculate the relative percentage frequency for one range of values for  $\\var{a[r]} \\le X \\lt \\var{a[r+1]}$    - you can then check the rest.

\n

Note that there were $\\var{daysopen}$ days  in the year when sales took place. 

\n

There were $\\var{norm1[r]}$ days out of the  $\\var{daysopen}$ when there were between $\\var{a[r]}$ and $\\var{a[r+1]}$ thousand pounds worth of sales (including  $\\var{a[r]}$ thousand but not $\\var{a[r+1]}$ thousand) .

\n

Hence the relative frequency percentage for such sales is given by \\[100 \\times \\frac{\\var{norm1[r]}}{\\var{daysopen}}\\%=\\var{rel[r]}\\%\\] to one decimal place.

\n

 

\n \n"}, {"name": "Construct a stem-and-leaf plot - ACC1012", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Anthony Youd", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5/"}], "showQuestionGroupNames": false, "preamble": {"css": "", "js": ""}, "metadata": {"description": "

Given random set of data (between 13 and 23 numbers all less than 100), find their stem-and-leaf plot.

", "licence": "Creative Commons Attribution 4.0 International", "notes": ""}, "parts": [{"type": "gapfill", "showCorrectAnswer": true, "scripts": {}, "gaps": [{"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[0][0]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[0][0]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[0][1]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[0][1]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[0][2]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[0][2]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[0][3]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[0][3]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[0][4]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[0][4]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[1][0]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[1][0]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[1][1]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[1][1]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[1][2]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[1][2]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[1][3]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[1][3]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[1][4]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[1][4]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[2][0]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[2][0]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[2][1]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[2][1]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[2][2]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[2][2]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[2][3]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[2][3]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[2][4]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[2][4]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[3][0]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[3][0]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[3][1]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[3][1]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[3][2]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[3][2]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[3][3]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[3][3]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[3][4]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[3][4]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[4][0]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[4][0]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[4][1]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[4][1]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[4][2]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[4][2]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[4][3]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[4][3]}"}, {"allowFractions": false, "showPrecisionHint": false, "showCorrectAnswer": true, "maxValue": "{u[4][4]}", "scripts": {}, "correctAnswerFraction": false, "type": "numberentry", "marks": 0.2, "minValue": "{u[4][4]}"}], "marks": 0, "prompt": "\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
STEMLEAF
$\\var{v}$[[0]][[1]][[2]][[3]][[4]]
$\\var{v+1}$[[5]][[6]][[7]][[8]][[9]]
$\\var{v+2}$[[10]][[11]][[12]][[13]][[14]]
$\\var{v+3}$[[15]][[16]][[17]][[18]][[19]]
$\\var{v+4}$[[20]][[21]][[22]][[23]][[24]]
\n \n"}], "functions": {"flattenint": {"type": "list", "parameters": [["a", "list"]], "definition": "\n /*only for integer arrays*/ \n a.toString().split(',').forEach( function (item, k) \n {a[k] = parseInt(item);\n }\n ); \n return a;\n \n", "language": "javascript"}}, "variables": {"r": {"description": "", "name": "r", "group": "Ungrouped variables", "definition": "shuffle([random(1..4),random(4..5),random(3..5),random(3..5),random(2..4)])", "templateType": "anything"}, "arr1": {"description": "", "name": "arr1", "group": "Ungrouped variables", "definition": "map(map(arr[y][p]-10*(y+v),p,0..r[y]-1),y,0..4)", "templateType": "anything"}, "s": {"description": "", "name": "s", "group": "Ungrouped variables", "definition": "flattenint(arr)", "templateType": "anything"}, "u": {"description": "", "name": "u", "group": "Ungrouped variables", "definition": "map(map(if(pConstruct a stem-and-leaf plot for the following data. Input all numbers into the fields below.

\n

{table([ss],[])}

\n

 NOTE: All 25 fields have to be filled in. Input -1 if there is no number in a field.

\n

 

\n

 

\n \n", "rulesets": {}, "variable_groups": [], "ungrouped_variables": ["arr", "ss", "s", "darr1", "u", "arr1", "v", "r"], "tags": ["ACC1012", "acc1012", "checked2015", "statistics", "stem-and-leaf plots"], "advice": "\n

Ordering the data gives:

\n

{table([s],[])}

\n

Splitting into the groups of 10s gives

\n

{table(arr,[])}

\n

Then putting this into stem-and-leaf plot gives

\n

{table(darr1,['STEM'])}

\n \n"}, {"name": "ACC1012 CBA 2 Q8", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Anthony Youd", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5/"}], "functions": {}, "ungrouped_variables": ["a1", "a3", "a2", "a5", "a4", "a7", "a6", "a8"], "tags": ["ACC1012", "acc1012", "checked2015", "junk"], "advice": "", "rulesets": {}, "parts": [{"distractors": ["", "", ""], "prompt": "

Which of the below would be the most appropriate way to display this data?

", "matrix": [0, 1, 0], "shuffleChoices": true, "scripts": {}, "choices": ["

Scatter plot

", "

Histogram

", "

Bar chart

"], "displayType": "radiogroup", "showCorrectAnswer": true, "minMarks": 0, "marks": 0, "displayColumns": 0, "type": "1_n_2", "maxMarks": 1}], "statement": "

The following table shows daily sales ($X$, in thousands of pounds) for a sports clothing outlet in 2005.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
SalesNumber of days
$5\\le X\\lt 15$$\\var{a1}$
$15\\le X\\lt 25$$\\var{a2}$
$25\\le X\\lt 35$$\\var{a3}$
$35\\le X\\lt 45$$\\var{a4}$
$45\\le X\\lt 55$$\\var{a5}$
$55\\le X\\lt 65$$\\var{a6}$
$65\\le X\\lt 75$$\\var{a7}$
$75\\le X\\lt 85$$\\var{a8}$
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a1": {"definition": "365-(a2+a3+a4+a5+a6+a7+a8)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(110..120)", "templateType": "anything", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(70..75)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a5": {"definition": "random(20..25)", "templateType": "anything", "group": "Ungrouped variables", "name": "a5", "description": ""}, "a4": {"definition": "random(65..70)", "templateType": "anything", "group": "Ungrouped variables", "name": "a4", "description": ""}, "a7": {"definition": "random(7..12)", "templateType": "anything", "group": "Ungrouped variables", "name": "a7", "description": ""}, "a6": {"definition": "random(9..14)", "templateType": "anything", "group": "Ungrouped variables", "name": "a6", "description": ""}, "a8": {"definition": "random(5..10)", "templateType": "anything", "group": "Ungrouped variables", "name": "a8", "description": ""}}, "metadata": {"notes": "

28/11/2013

\n

Fix bad table formatting.

", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "ACC1012 CBA 2 Q9", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Anthony Youd", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5/"}], "functions": {}, "ungrouped_variables": ["a", "table_headers", "b", "table_columns"], "tags": ["ACC1012", "acc1012", "checked2015", "junk"], "advice": "", "rulesets": {}, "parts": [{"distractors": ["", "", ""], "prompt": "

Which of the following would be most appropriate to represent this data?

", "matrix": [0, 0, 1], "shuffleChoices": true, "scripts": {}, "choices": ["

Pie chart

", "

Histogram

", "

Scatter plot

"], "displayType": "radiogroup", "showCorrectAnswer": true, "minMarks": 0, "marks": 0, "displayColumns": 0, "type": "1_n_2", "maxMarks": 1}], "statement": "

The following table shows expenditure of advertising ($X$, in thousands of pounds) and total sales ($Y$, also in thousands of pounds) for a large furniture store in Wales.

\n

{table(table_columns,table_headers)}

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "[random(13..15),random(15..17),random(20..24),random(24..30),random(14..16),random(22..28),random(10..12)]", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "table_headers": {"definition": "[\"$X$\",\"$Y$\"]", "templateType": "anything", "group": "Ungrouped variables", "name": "table_headers", "description": ""}, "b": {"definition": "[random(27..35),random(36..44),random(34..42),random(55..65),random(25..34),random(55..63),random(12..18)]", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "table_columns": {"definition": "list(transpose(matrix(a,b)))", "templateType": "anything", "group": "Ungrouped variables", "name": "table_columns", "description": ""}}, "metadata": {"notes": "

28/11/2013

\n

Complete overhaul. (AJY)

", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "type": "exam", "contributors": [{"name": "James Waldron", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1175/"}], "extensions": ["stats"], "custom_part_types": [], "resources": []}