// Numbas version: exam_results_page_options {"name": "Set Soal Matematika IIA - Bab 7 - 11", "metadata": {"description": "", "licence": "None specified"}, "duration": 3600, "percentPass": 0, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "PG + Isian", "pickingStrategy": "all-shuffled", "pickQuestions": 1, "questionNames": ["", "", "", "", "", ""], "questions": [{"name": "Mat 2A - UTS - No 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Meong Meong Project", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4687/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Jika $\\displaystyle \\int \\dfrac{1}{x^3-\\var{a^2}x}\\, dx = A\\ln|\\var{a^2}-x^2|+B\\ln|x|+C$, maka $A-B = \\dfrac{c}{\\var{2*a^2}}$ dengan $c=\\ldots$.

", "advice": "", "rulesets": {}, "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "3", "maxValue": "3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Mat 2A - UTS - No 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Meong Meong Project", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4687/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Pilihlah seluruh integral tak wajar yang konvergen.

", "advice": "", "rulesets": {}, "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(4..8)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\displaystyle \\int_1^\\infty \\dfrac{\\tan^{-1}(x)}{1+x^{\\var{a}}}\\, dx$.", "$\\displaystyle \\int_1^\\infty \\dfrac{x^2+\\var{a-2}x}{x^5+\\var{a}x}\\, dx$.", "$\\displaystyle \\int_{\\var{a}}^\\infty \\dfrac{\\var{a}^x}{x^x}\\, dx$.", "$\\displaystyle \\int_0^\\infty\\dfrac{x^{3/2}}{\\var{a}+x^3}\\, dx$."], "matrix": ["1", "1", "1", 0], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Mat 2A - UTS - No 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Meong Meong Project", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4687/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Diketahui deret $\\displaystyle \\sum_{n=0}^{\\infty}a_n$ konvergen bersyarat. Pilih semua deret yang pasti divergen.

", "advice": "", "rulesets": {}, "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": "0", "maxMarks": "1", "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "score per matched cell", "choices": ["$\\displaystyle \\sum_{n=0}^{\\infty}\\sqrt{n}a_n$.", "$\\displaystyle \\sum_{n=0}^\\infty na_n$.", "$\\displaystyle \\sum_{n=0}^\\infty |a_n|$", "$\\displaystyle \\sum_{n=0}^\\infty n^2|a_n|$"], "matrix": [0, 0, "1", "1"], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Mat 2A - UTS - No 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Meong Meong Project", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4687/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Misal $\\alpha$ menyatakan sudut terkecil dari bidang $z=2x+3y-\\var{a}$ dan $3x-2y-z=\\var{a-2}$.

", "advice": "", "rulesets": {}, "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(7..12)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Maka $\\cos(\\alpha)=\\dfrac{1}{c}$ dengan $c=\\ldots$.

", "minValue": "14", "maxValue": "14", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Mat 2A - UTS - No 5", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Meong Meong Project", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4687/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Asimtot datar dari grafik fungsi $y=(\\var{a}^x+\\var{b}^x)^{-1/x}$ adalah $y=a$ dan $y=b$.

", "advice": "", "rulesets": {}, "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2,3,4)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(5,6,7)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Nilai dari $a+b=\\ldots$.

", "minValue": "1/a+1/b", "maxValue": "1/a+1/b", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Mat 2A - UTS - No 6", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Meong Meong Project", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4687/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Misal partikel A bergerak pada kurva $x(t)=3\\sin(t)$, $y(t)=2\\cos(t)$, $t\\in [0,2\\pi]$ dan partikel B bergerak pada kurva $x(t)=-3+\\cos(t)$, $y(t)=1+\\sin(t)$, $t\\in[0,2\\pi]$.

", "advice": "", "rulesets": {}, "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Kedua partikel tersebut akan bertabrakan ketika $t = k\\pi$ dengan $k = \\ldots$.

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$0$", "$\\dfrac{1}{2}$", "$1$", "$\\dfrac{3}{2}$", "$2$"], "matrix": [0, 0, "0", "1", 0], "distractors": ["", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Isian Terstruktur", "pickingStrategy": "random-subset", "pickQuestions": 1, "questionNames": [""], "questions": [{"name": "Mat 2A - UTS - No 7", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Meong Meong Project", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4687/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Diketahui $\\displaystyle \\int_{-\\infty}^\\infty e^{-x^2}\\, dx = \\sqrt{\\pi}$.

", "advice": "", "rulesets": {}, "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.75", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Karena $f(x)=e^{-x^2}$ merupakan fungsi genap, maka $\\displaystyle \\int_0^\\infty e^{-x^2}\\, dx = \\dfrac{\\sqrt{\\pi}}{a}$ dengan $a=\\ldots$.

", "minValue": "2", "maxValue": "2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\displaystyle \\int_0^\\infty e^{-x^2/\\var{a^2}}\\, dx = \\dfrac{\\sqrt{\\pi}}{b}$ dengan $b = \\ldots$.

", "minValue": "2*a", "maxValue": "2*a", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1.25", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\displaystyle \\int_0^\\infty x^4e^{-x^2}\\, dx = c\\sqrt{\\pi}$ dengan $c=\\ldots$.

", "minValue": "3/8", "maxValue": "3/8", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "warn", "message": "

Waktunya 5 menit lagi ya.

Selamat datang!

\n

Silakan gunakan set soal ini dengan bijak. Kalian bisa mencoba set soal ini terus-menerus.

\n

Set soal ini dapat digunakan oleh siapapun secara gratis.

\n

Petunjuk pengerjaan soal:

\n
\n
• Jawaban dapat dituliskan dalam bentuk desimal maupun pecahan.
• \n
• Jika jawaban dituliskan dalam bentuk desimal, pisahkan dengan tanda titik dan bulatkan hingga dua angka di belakang titik. Contoh: ketik 0.67 untuk menjawab \$$\\frac{2}{3}\$$.
• \n
• Jika jawaban dituliskan dalam bentuk pecahan, pisahkan pembilang dan penyebut dengan garis miring dan jawab dengan pecahan paling sederhana. Contoh: ketik 2/3 untuk menjawab \$$\\frac{2}{3}\$$.
• \n
\n

Jika ada kunci jawaban yang salah, kalian dapat memberitahu kami di Instagram @meongmeongproject atau OA Line @eog7710d.

", "reviewshowscore": true, "reviewshowfeedback": false, "reviewshowexpectedanswer": true, "reviewshowadvice": false, "feedbackmessages": []}, "contributors": [{"name": "Meong Meong Project", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4687/"}], "extensions": [], "custom_part_types": [], "resources": []}