// Numbas version: finer_feedback_settings {"name": "Homoclinic bifurcation preparation", "metadata": {"description": "
Here you'll see a first example of how a map can arise from a system of differential equations and gain some first insight into the dynamics of 1D maps.
", "licence": "All rights reserved"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", ""], "variable_overrides": [[], []], "questions": [{"name": "Transit map for saddle point", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Henriksen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/664/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "Consider the system \\[ \\dot{x}=\\lambda_1 x\\\\ \\dot{y}=\\lambda_2y ,\\] where $\\lambda_1 < 0 < \\lambda_2$ and $D:=\\lambda_1+\\lambda_2 < 0$.
", "advice": "The solution is given in the part \"solution\".
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": true, "customName": "questions", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Hint to 1.", "rawLabel": "", "otherPart": 1, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}, {"label": "Hint to 2 and 3", "rawLabel": "", "otherPart": 2, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}, {"label": "Solution", "rawLabel": "", "otherPart": 3, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The flow naturally defines a mapping from the half line $L_1 = \\{(1,y):y>0\\}$, to the half line $L_2=\\{(x,1):x>0\\}$. Indeed given a point $(0,\\eta) \\in L_1$ the orbit through $(1,\\eta)$ intersects $L_2$ in one and only one point $(\\xi(\\eta), 1) \\in L_2$. In this way define a mapping $\\xi : \\mathbb{R_+}\\to \\mathbb{R_+}$.
\nThere are several ways to proceed, here's one.
\nYou can assume that for a solution in the first quadrant you can write $y$ as a function of $x$ (this follows since in this case $x(t)$ is injective). By the chain rule
\\[y'(x)=\\frac{\\dot{y}}{\\dot{x}}.\\]
This should give you solutions depending on an arbitrary constant we could call $c$.
The solution we are interested in, is the one where $y=\\eta>0$ when $x=1$. Use this to determine $c$.
\nKnowing $c$, you can find $\\xi=\\xi(\\eta)$ such that $y(\\xi)=1$.
"}, {"type": "information", "useCustomName": true, "customName": "Hint to 2 and 3", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "questions", "rawLabel": "", "otherPart": 0, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "In the first part you should've shown that $\\xi(\\eta)=\\eta^a$, with $a = -\\frac{\\lambda_1}{\\lambda_2}$.
\nShow that $a > 0$, this should give you 2.
\nShow that $a > 1$ (since $D = \\lambda_1 + \\lambda_2 <0$), this should give you 3.
"}, {"type": "information", "useCustomName": true, "customName": "Solution", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Since for a solution in the first quadrant $\\dot{x}<0$, $x(t)$ is an injective mapping, so a solution curve can be written $(x,y(x))$.
\nUsing the chain rule
\\[ y'(x)=\\frac{\\dot{y}}{\\dot{x}} = \\frac{\\lambda_2}{\\lambda_1} \\frac{y}{x}=-\\frac{1}{a}\\frac{y}{x} ,\\]
where we have set $a = -\\lambda_1 / \\lambda_2$.
Since $\\lambda_1 < 0 < \\lambda_2$, we have $a > 0$. Since $\\lambda+\\lambda_2 < 0$ we have $-\\lambda_1 > \\lambda_2$, so $a > 1$.
\nSeparating the variables, we find that $y(x)= c x^{-1/a}$, where $c$ is a constant.
\nWe look at the particular solution that satisfies $y(1)=\\eta$. This corresponds to $c=\\eta$, so the particular solution is $y(x)=\\eta x^{-1/a}$.
\nWhen does the solution curve cross $L_2$? It does so when $(y(x), x) = (1, \\xi)$ for some $\\xi>0$. So we look at the equation $y(x) = 1$: \\[\\eta x^{-1/a} = 1 \\Rightarrow x=\\eta^a .\\]
\nThis means that the function we are looking for is $\\xi(\\eta)=\\eta^a$.
\nSince $a > 0$, we have $\\xi(\\eta) \\to 0$ when $\\eta \\to 0$. This shows 2.
\nWe also have $\\xi'(\\eta) = a \\eta^{a-1} $, and since $a>1$ this is equal to zero when $\\eta = 0$. This shows 3.
\nEnd of exercise.
"}], "partsMode": "explore", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Mappings and fixed points in 1D", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Henriksen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/664/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "Let $f:\\mathbb{R}\\to \\mathbb{R}$ be a mapping. This exercise explores how we can consider $f$ a dynamical system.
", "advice": "The exercise should be somewhat self-explanatory. Ask me if you are in doubt.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "a) dynamics", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "linear case", "rawLabel": "", "otherPart": 1, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Define the n'th iterate of f by
\\[ f^{\\circ n}(x)= \\begin{cases} x & \\text{when } n = 0 ; \\\\ f(f^{\\circ (n-1)}(x)) & \\text{when } n =1,2,3,\\ldots \\end{cases} \\]
When $f$ is invertible, when can also define $f^{\\circ n}$ for $n = -1, -2, \\ldots$, by letting $f^{\\circ -k}$ denote the $k$'th iterate of the inverse map, when $k \\in \\mathbb{N}$.
\nWe can think of $f$ as defining a flow, by letting $\\phi_n(x)=f^{\\circ n}(x)$. Notice, that in this setting \"time\" n is discrete, $n \\in \\mathbb{N}$ (or $n \\in \\mathbb{Z}$ in the invertible case).
\nGiven $x_0$, we can let $x_1 = f(x_0)$, $x_2 = f(x_1)$, ... Then $x_n = f^{\\circ n}(x_0)$. The points $z_0, z_1, z_2, \\ldots,$ form what is called the forward orbit of $z_0$.
\nA point $x^*$ where $f(x^*) = x^*$ is called a fixed point.
\nHow many fixed points do the mapping $x \\mapsto x^3$ have: [[0]].
\nLet the diagonal in $\\mathbb{R}^2$ be the points $\\{(x,x):x\\in\\mathbb{R}\\}$. Consider the following statement:
\nThe fixed points of f are the values of x where the graph of f intersects the diagonal.
\nIs this statement true? [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "noofFP", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "fixedpts", "minValue": "3", "maxValue": "3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": true, "customName": "truefalse", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "fixedpts", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["True", "False"], "matrix": ["1", 0], "distractors": ["", ""]}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": true, "customName": "linear case", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "asympstable", "rawLabel": "", "otherPart": 2, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "condition", "prompt": "Now consider the simple linear case $f(x) = \\lambda x$, where $\\lambda$ is a constant. Then $x^*=0$ is a fixed point.
\nDetermine a condition that is equivalent (meaning sufficient and necessary) to the following:
For any $x_0 \\in \\mathbb{R}$ it holds that $f^{\\circ n}(x_0) \\to 0$ when $n\\to \\infty$.
Suppose $f : \\mathbb{R} \\to \\mathbb{R}$ is differentiable at the point $x^*$, and that $f(x^*)=x^*$.
\nLet $\\lambda = f'(x^*)$, and suppose $\\lvert \\lambda \\rvert < 1$.
\nProve that there exists an interval open $I = (x^*-\\delta, x^*+\\delta)$, so that when $x_0 \\in I$, it holds that $f^{\\circ n}(x_0) \\to x^*$, when $n \\to \\infty$.
\nHint: Given any $\\kappa$ with $\\kappa > \\lvert \\lambda \\rvert$, there exists an open interval around $x^*$ where $\\lvert f(x)-f(x^*)\\rvert \\leq \\kappa \\lvert x-x^* \\rvert$.
\n"}, {"type": "information", "useCustomName": true, "customName": "solution", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "conclusion", "rawLabel": "", "otherPart": 4, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "We can assume $x^*=0$ with no loss of generality.
\nPick $\\kappa$ with $\\lvert \\lambda \\rvert < \\kappa < 1$.
\nSince $f'(0)=\\lambda$, we know $\\frac{f(x-0)}{x-0}=\\frac{f(x)}{x}\\to \\lambda$ when $x\\to 0$.
\nIt follows that $\\left\\lvert \\frac{f}{x}\\right\\rvert \\to \\lvert \\lambda\\rvert$ when $x\\to 0$. It particular, there exists $\\delta > 0$ such that $\\lvert \\frac{f(x)}{x} \\rvert \\leq \\kappa$ when $0 < \\lvert x \\rvert <\\delta$.
\nWe deduce that $\\lvert f(x) \\rvert \\leq \\kappa \\lvert x\\rvert$, when $x \\in I =(-\\delta, \\delta)$.
\nBy induction, $\\lvert f^{\\circ n}(x) \\rvert \\leq \\kappa^n \\lvert x \\rvert \\to 0$ when $n \\to \\infty$, for any $x \\in I$.
"}, {"type": "information", "useCustomName": true, "customName": "conclusion", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "We will later talk about asymptotic stability, and basically, what we have just seen, is that $\\lvert f'(x^*) \\rvert < 1$ is a sufficient condition for a fixed point $x^*$ to being asymptotically stable.
\nEnd of exercise.
"}], "partsMode": "explore", "maxMarks": "3", "objectives": [{"name": "fixedpts", "limit": "2"}, {"name": "condition", "limit": "1"}], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": false, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "These questions are two prepare you for understanding the homoclinic bifurcation. Again, this is not an exam, no scores are recorded anywhere.
", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Christian Henriksen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/664/"}], "extensions": [], "custom_part_types": [], "resources": []}