// Numbas version: finer_feedback_settings {"navigation": {"preventleave": true, "showresultspage": "oncompletion", "allowregen": true, "onleave": {"message": "", "action": "none"}, "reverse": true, "showfrontpage": true, "browse": true}, "showQuestionGroupNames": false, "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International", "notes": ""}, "allQuestions": true, "percentPass": 0, "name": "Loughborough workshop demo", "questions": [], "pickQuestions": 0, "timing": {"timedwarning": {"message": "", "action": "none"}, "allowPause": true, "timeout": {"message": "", "action": "none"}}, "feedback": {"allowrevealanswer": true, "showtotalmark": true, "showactualmark": true, "advicethreshold": 0, "showanswerstate": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "question_groups": [{"questions": [{"name": "4.8 equations with logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Jennifer Koenig", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/455/"}], "functions": {}, "ungrouped_variables": ["a", "b", "c", "d"], "tags": ["algebra", "logarithms"], "preamble": {"css": "", "js": ""}, "advice": "
Take an example, $log(x-3)=3$
\nraise both sides so that they are powers to the base 10
\non the left hand side you are doing $10^{log(x-3)}$ leaves you with just x-3.
\n$10^{log(x-3)}=10^3$
\n$x-3=10^3$
\n$x-3=1000$
\n$x=1003$
\n-------------
\nAnother example, $log(x+4)=-2$
\n$10^{log(x+4)}=10^{-2}$
\n$x+4=10^{-2}$
\n$x+4=0.01$
\n$x=-3.99$
", "rulesets": {}, "parts": [{"prompt": "Solve for $x$:
\n$log(x-\\var{a}) = \\var{b}$
\n$x$ = [[0]]
", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "{a}+10^{b}", "minValue": "{a}+10^{b}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "Solve for $x$:
\n$log(x-\\var{c}) = \\var{d}$
\n$x$ = [[0]]
", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "{c}+10^{d}", "minValue": "{c}+10^{d}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "10*random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}}, "metadata": {"notes": "", "description": "solve for x where logs are involved
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Algebra: Simplifying Expressions (2 unknowns)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}], "tags": ["algebra", "algebraic manipulation", "expanding brackets", "simplification", "simplifying an expression"], "variables": {"a": {"name": "a", "definition": "random(-6..6 except 0)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "d": {"name": "d", "definition": "random(1..9 except [c,b])", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "c": {"name": "c", "definition": "random(-6..6 except [0,a])", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "b": {"name": "b", "definition": "random(1..9 except a)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}}, "parts": [{"extendBaseMarkingAlgorithm": true, "prompt": "\nSimplify:
\n$\\simplify[std]{({a}x+{b}y)({c}x+{d}y)-({a}x+{d}y)({c}x+{b}y)}=\\;$[[0]]
\nDo not include brackets in your answer.
\nInput $xy$ as $x*y$.
\n ", "scripts": {}, "type": "gapfill", "showCorrectAnswer": true, "unitTests": [], "variableReplacements": [], "gaps": [{"answerSimplification": "std", "checkingType": "absdiff", "checkingAccuracy": 0.001, "showCorrectAnswer": true, "notallowed": {"showStrings": false, "message": "Do not include brackets in your answer.
", "strings": ["("], "partialCredit": 0}, "variableReplacements": [], "showFeedbackIcon": true, "maxlength": {"message": "You can simplify the expression further.
", "length": 7, "partialCredit": 0}, "adaptiveMarkingPenalty": 0, "answer": "{(a-c)*(d-b)}*x*y", "customName": "", "extendBaseMarkingAlgorithm": true, "scripts": {}, "type": "jme", "variableReplacementStrategy": "originalfirst", "showPreview": true, "failureRate": 1, "checkVariableNames": false, "vsetRange": [0, 1], "useCustomName": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}], "marks": 2, "customMarkingAlgorithm": "", "vsetRangePoints": 5, "unitTests": []}], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "marks": 0, "customMarkingAlgorithm": "", "adaptiveMarkingPenalty": 0, "sortAnswers": false, "customName": "", "useCustomName": false}], "metadata": {"licence": "None specified", "description": "Simplify $(ax+by)(cx+dy)-(ax+dy)(cx+by)$. Answer is a multiple of $xy$.
"}, "variable_groups": [], "statement": "Simplify the following expression.
", "rulesets": {"std": ["all", "!collectNumbers", "!noLeadingMinus"]}, "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "preamble": {"css": "", "js": ""}, "advice": "\nExpanding the brackets we have:
\n\\[\\begin{eqnarray*}\\simplify[std]{({a}x+{b}y)({c}x+{d}y)-({a}x+{d}y)({c}x+{b}y)}&=&(\\simplify[std]{{a*c}x^2+{b*c+a*d}x*y+{b*d}y^2})-(\\simplify[std]{{a*c}x^2+{b*a+c*d}x*y+{b*d}y^2})\\\\&=&\\simplify[std]{{b*c+a*d}x*y-{b*a+c*d}x*y}\\\\&=&\\var{(a-c)*(d-b)}xy\\end{eqnarray*}\\]
\n ", "ungrouped_variables": ["a", "c", "b", "d"], "type": "question"}, {"name": "Anne Berit's copy of Combining algebraic fractions 1 (Video)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Anne Berit Fuglestad", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/490/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "nb", "a1", "a2", "s1"], "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "chain rule", "combining algebraic fractions", "common denominator"], "preamble": {"css": "", "js": ""}, "advice": "\nThe formula for {nb} fractions is :
\n\\[\\simplify[std]{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\\]
\nand for this exercise we have $\\simplify{b=x+{b}}$, $\\simplify{d=x+{d}}$.
Hence we have:
\\[\\simplify[std]{{a} / ({a1}*x + {b}) + ({c} / ({a2}*x + {d})) = ({a} * ({a2}*x + {d}) + {c} * ({a1}*x + {b})) / (({a1}*x + {b}) * ({a2}*x + {d})) = ({a*a2 + c*a1} * x + {a * d + c * b}) / (({a1}*x + {b}) * ({a2}*x + {d}))}\\]
Express \\[\\simplify{{a} / ({a1}x + {b}) + ({c} / ({a2}x + {d}))}\\] as a single fraction.
\nInput the fraction here: [[0]]
\nInput your answer in the form $\\displaystyle \\frac{(ax+b)}{((cx+d)(ex+f))}$ with no other brackets than those shown.
\nClick on Show steps if you need help. You will lose one mark if you do so.
\nYou will also find a video which goes through a similar example.
", "marks": 0, "gaps": [{"notallowed": {"message": "Input as a single fraction.
", "showStrings": false, "strings": [")-", ")+"], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 1e-05, "vsetrange": [10, 11], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({a*a2 + c*a1} * x + {a * d + c * b})/ (({a1}*x + {b}) * ({a2}*x + {d}))", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"prompt": "The formula for {nb} fractions is:
\n\\[\\simplify[std]{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\\]
\nand for this exercise we have $\\simplify{b=x+{b}}$, $\\simplify{d=x+{d}}$.
\nNote that in your answer you do not need to expand the denominator.
\nThe following video goes through an example similar to this one.
\n", "type": "information", "scripts": {}, "showCorrectAnswer": true, "marks": 0}], "type": "gapfill"}], "statement": "\nAdd the following two fractions together and express as a single fraction over a common denominator.
\n\n \n ", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(-9..9 except [0,-a])", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(-9..9 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(-9..9 except [0,round(b*a2/a1)])", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "nb": {"definition": "if(c<0,'taking away','adding')", "templateType": "anything", "group": "Ungrouped variables", "name": "nb", "description": ""}, "a1": {"definition": "1", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a2": {"definition": "1", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}, "s1": {"definition": "if(c<0,-1,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}}, "metadata": {"notes": "
5/08/2012:
\nAdded tags.
\nAdded description.
\nChanged to two questions, for the numerator and denomimator, rather than one as difficult to trap student input for this example. Still some ambiguity however.
\n12/08/2012:
\nBack to one input of a fraction and trapped input in Forbidden Strings.
\nUsed the except feature of ranges to get non-degenerate examples.
\nChecked calculation.OK.
\nImproved display in content areas.
\n02/02/2013:
\nModified variable c so that the coefficient of $x$ in the answer is not 0.
\nChecked input again, OK.
", "description": "Express $\\displaystyle \\frac{a}{x + b} \\pm \\frac{c}{x + d}$ as an algebraic single fraction over a common denominator.
\nContains a video in Show steps.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Solving Quadratic Equations ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Clare Lundon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/492/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "f", "s3", "s2", "s1", "n4", "n2", "disc", "rdis", "n1", "c1", "n3", "rep", "n5", "d1"], "tags": ["algebra", "Algebra", "Factorisation", "factorisation", "find roots of a quadratic equation", "quadratic formula", "quadratics", "roots of a quadratic equation", "solving a quadratic equation", "solving equations", "Solving equations", "Steps", "steps"], "preamble": {"css": "", "js": ""}, "advice": "Direct Factorisation
\nIf you can spot a direct factorisation then this is the quickest way to do this question.
\nFor this example we have the factorisation
\n\\[\\simplify{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d} = ({a} * x + { -c}) * ({b} * x + { -d})}\\]
\nHence we find the roots:
\\[\\begin{eqnarray} x&=& \\simplify{{n1-n4}/{2*a*b}}\\\\ x&=& \\simplify{{n1+n4}/{2*a*b}} \\end{eqnarray} \\]
Other Methods.
\nThere are several methods of finding the roots – here are the main methods.
\nFinding the roots of a quadratic using the standard formula.
\nWe can use the following formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$
\nThe two roots are
\n\\[ x = \\frac{-b +\\sqrt{b^2-4ac}}{2a}\\mbox{ and } x = \\frac{-b -\\sqrt{b^2-4ac}}{2a}\\]
there are three main types of solutions depending upon the value of the discriminant $\\Delta=b^2-4ac$
1. $\\Delta \\gt 0$. The roots are real and distinct
\n2. $\\Delta=0$. The roots are real and equal. Their common value is $\\displaystyle -\\frac{b}{2a}$
\n3. $\\Delta \\lt 0$. There are no real roots. The root are complex and form a complex conjugate pair.
\nFor this question the discriminant of $\\simplify{{a*b}x^2+{-b*c-a*d}x+{c*d}}$ is $\\Delta = \\simplify[std]{{-n1}^2-4*{a*b*c*d}}=\\var{disc}$
\n{rdis}.
\nSo the {rep} roots are:
\n\\[\\begin{eqnarray} x = \\frac{\\var{n1} - \\sqrt{\\var{disc}}}{\\var{n3}} &=& \\frac{\\var{n1} - \\var{n4} }{\\var{n3}} &=& \\simplify{{n1 - n4}/ {n3}}\\\\ x = \\frac{\\var{n1} + \\sqrt{\\var{disc}}}{\\var{n3}} &=& \\frac{\\var{n1} + \\var{n4} }{\\var{n3}} &=& \\simplify{{n1 + n4}/ {n3}} \\end{eqnarray}\\]
\nCompleting the square.
\nFirst we complete the square for the quadratic expression $\\simplify{{a*b}x^2+{-n1}x+{c*d}}$
\\[\\begin{eqnarray} \\simplify{{a*b}x^2+{-n1}x+{c*d}}&=&\\var{n5}\\left(\\simplify{x^2+({-n1}/{a*b})x+ {c*d}/{a*b}}\\right)\\\\ &=&\\var{n5}\\left(\\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2+ \\simplify{{c*d}/{a*b}-({-n1}/({2*a*b}))^2}\\right)\\\\ &=&\\var{n5}\\left(\\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2 -\\simplify{ {n2^2}/{4*(a*b)^2}}\\right) \\end{eqnarray} \\]
So to solve $\\simplify{{a*b}x^2+{-n1}x+{c*d}}=0$ we have to solve:
\\[\\begin{eqnarray} \\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2&\\phantom{{}}& -\\simplify{ {n2^2}/{4*(a*b)^2}}=0\\Rightarrow\\\\ \\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2&\\phantom{{}}&=\\simplify{ {n2^2}/{4*(a*b)^2}=({abs(n2)}/{2*a*b})^2} \\end{eqnarray}\\]
So we get the two {rep} solutions:
\\[\\begin{eqnarray} \\simplify{x+({-n1}/{2*a*b})}&=&\\simplify{-{abs(n2)}/{2*a*b}} \\Rightarrow &x& = \\simplify{({-abs(n2)+n1}/{2*a*b})}\\\\ \\simplify{x+({-n1}/{2*a*b})}&=&\\simplify{({abs(n2)}/{2*a*b})} \\Rightarrow &x& = \\simplify{({n1+abs(n2)}/{2*a*b})} \\end{eqnarray}\\]
Solve for $x$: \\[\\simplify[std]{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d}}=0\\]
The least root is $x=\\;$ [[0]]. The greatest root is $x=\\;$ [[1]]
You can get more information on solving a quadratic by clicking on Show steps. You will lose 1 mark if you do so.
\nEnter the least root first. If the roots are equal, enter the root in both input boxes.
\nEnter the roots as fractions or integers, not as decimals.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "\nFinding the roots by factorisation.
\nFinding a factorisation of a quadratic $q(x)=a(x-r)(x-s)$ where $a$ is the coefficient of $x^2$ gives the roots $x=r$, $x=s$ immendiately.
\nIf you cannot find a factorisation then there are several other methods you can use.
\nUsing the formula for the roots.
\nYou can find the roots by using the formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$
\nThe two roots are:
\n\\[ x = \\frac{-b +\\sqrt{b^2-4ac}}{2a}\\mbox{ and } x = \\frac{-b -\\sqrt{b^2-4ac}}{2a}\\]
there are three main types of solutions depending upon the value of the discriminant $\\Delta=b^2-4ac$
1. $\\Delta \\gt 0$. The roots are real and distinct
\n2. $\\Delta=0$. The roots are real and equal. Their value is $\\displaystyle \\frac{-b}{2a}$
\n3. $\\Delta \\lt 0$. There are no real roots. The root are complex and form a complex conjugate pair.
\n\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"notallowed": {"message": "
Input numbers as fractions or integers not as a decimals.
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.0001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{n1-n4}/{2*a*b}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"notallowed": {"message": "Input numbers as fractions or integers not as a decimals.
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.0001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{n1+n4}/{2*a*b}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Find the roots of the following quadratic equation.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "c1*s3", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "if((a*d1)^2=(b*c)^2, max(d1+1,random(1..5))*s3,d1*s3)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "f": {"definition": "a*b", "templateType": "anything", "group": "Ungrouped variables", "name": "f", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "n5": {"definition": "a*b", "templateType": "anything", "group": "Ungrouped variables", "name": "n5", "description": ""}, "disc": {"definition": "(b*c+a*d)^2-4*a*b*c*d", "templateType": "anything", "group": "Ungrouped variables", "name": "disc", "description": ""}, "c1": {"definition": "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))", "templateType": "anything", "group": "Ungrouped variables", "name": "c1", "description": ""}, "rep": {"definition": "switch(disc=0,'repeated', ' ')", "templateType": "anything", "group": "Ungrouped variables", "name": "rep", "description": ""}, "n1": {"definition": "b*c+a*d", "templateType": "anything", "group": "Ungrouped variables", "name": "n1", "description": ""}, "n2": {"definition": "b*c-a*d", "templateType": "anything", "group": "Ungrouped variables", "name": "n2", "description": ""}, "n3": {"definition": "2*a*b", "templateType": "anything", "group": "Ungrouped variables", "name": "n3", "description": ""}, "n4": {"definition": "abs(n2)", "templateType": "anything", "group": "Ungrouped variables", "name": "n4", "description": ""}, "rdis": {"definition": "switch(disc=0,'The discriminant is '+ 0+' and so we get two repeated roots in this case.',disc<0, 'There are no real roots.','The roots exist and are distinct. ')", "templateType": "anything", "group": "Ungrouped variables", "name": "rdis", "description": ""}, "d1": {"definition": "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))", "templateType": "anything", "group": "Ungrouped variables", "name": "d1", "description": ""}}, "metadata": {"description": "Solve for $x$: $\\displaystyle ax ^ 2 + bx + c=0$.
", "licence": "All rights reserved"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}], "pickQuestions": 0, "pickingStrategy": "all-ordered", "name": ""}], "shuffleQuestions": false, "duration": 0, "type": "exam", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "extensions": [], "custom_part_types": [], "resources": []}