// Numbas version: exam_results_page_options {"name": "Ableitung von Polynom- und Exponentialfunktionen", "metadata": {"description": "

Übung der Ableitungsregeln

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "duration": 0, "percentPass": "80", "showQuestionGroupNames": true, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Polynomfunktionen", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], []], "questions": [{"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Polynomfunktionen", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden die grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

In dieser Aufgabe ${\\simplify[std,!collectLikeFractions]{ f(x) = ({a[2]}x ^ {n[2]}) + ({a[1]}x^{n[1]}) + ({a[0]}x^{n[0]}) } }$ sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[2]}x ^ {n[2]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[2]} \\cdot \\var{n[2]}x ^ \\var{n[2]-1} = \\simplify[std]{{{a[2]}*{n[2]}}x ^ {n[2]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{{{a[1]}*{n[1]}}x ^ {n[1]-1}} \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{{{a[0]}*{n[0]}}x ^ {n[0]-1}} \\]

\n

Also ist die Ableitung von $f$ : $\\simplify[std,!collectLikeFractions]{ f'(x) = {{a[2]}*{n[2]}}x ^ {n[2]-1} + {{a[1]}*{n[1]}}x^{n[1]-1} +{{a[0]}*{n[0]}}x^{n[0]-1} }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "!collectNumbers", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..4)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Das Polynom besteht aus drei Summanden. Dies sind die Koeffizienten.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

${\\simplify[std,!collectLikeFractions]{ f(x) = {a[2]}x ^ {n[2]} + {a[1]}x^{n[1]} + {a[0]}x^{n[0]} } }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden, also auch Polynomfunktionen.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{n[2]}*{a[2]}}x^({n[2]-1}) + {{n[1]}*{a[1]}}*x^({n[1]-1}) + {{n[0]}*{a[0]}}x^({n[0]-1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Exponentialfunktionen", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], []], "questions": [{"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ableitung von Exponentialfunktionen mit linearen Exponenten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "tags": [], "metadata": {"description": "

Es werden grundlegenden Ableitungsregeln geübt.

\n

Die Reihenfolge der Summanden ist auch randomisiert.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

Geben Sie die Ableitung f'(x) von f(x) an.

", "advice": "

\n

In dieser Aufgabe 
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$
sind die einzelnen Ableitungen:

\n

\\[ g(x) = \\simplify[std]{{a[1]}x ^ {n[1]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[1]} \\cdot \\var{n[1]}x ^ \\var{n[1]-1} = \\simplify[std]{ {{a[1]}*{n[1]}}x ^ {n[1]-1} } \\]

\n

\\[ g(x) = \\simplify[std]{{a[0]}x ^ {n[0]}} \\Rightarrow g'(x) = \\var[fractionNumbers]{a[0]} \\cdot \\var{n[0]}x ^ \\var{n[0]-1} = \\simplify[std]{ {{a[0]}*{n[0]}}x ^ {n[0]-1} } \\]

\n

\\[ g(x) = \\simplify[std,!noLeadingMinus]{{c}e^({b[1]}*x+{b[0]}) } \\Rightarrow
   g'(x) = (\\var[fractionNumbers]{c}) \\cdot  (\\var{b[1]}) \\cdot \\simplify[std,!noLeadingMinus]{e^({b[1]}*x+{b[0]}) } =
              \\simplify[std,!noLeadingMinus]{{c}*{b[1]}*e^({b[1]}*x+{b[0]}) } \\]

\n

Also ist die Ableitung von $f$ :
$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {c}*{b[1]}e^({b[1]}*x+{b[0]})  + {{a[1]}*{n[1]}}x ^ {n[1]-1}   + {{a[0]}*{n[0]}}x ^ {n[0]-1}   }$

", "rulesets": {"std": ["all", "!collectLikeFractions", "fractionNumbers", "timesDot"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(0..2)", "description": "

Grad des Polynoms

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "[random([-1,1])*random(1..6)/random(1..6),random([-1,1])*random(1..6)/random(1..6)]", "description": "

Die Koeffizienten für den polynomialen Teil.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random([-1,1])*random(1..6)/random(1..6)", "description": "

Koeffizient der Exponentialfunktion.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "[random(-1 .. 1), random([-4,-3,-2,-1,1,2,3,4])]", "description": "

Koeffizienten des linearen Exponenten

", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "shuffle([1,0,0])", "description": "

Position der e-Funktion in der Summe

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "b", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$ f(x) = \\simplify[std,!otherNumbers,!noLeadingMinus]{
        {z[2]}*{c}e^({b[1]}*x+{b[0]})  + {a[1]}x^{n[1]} +
        {z[1]}*{c}e^({b[1]}*x+{b[0]})  + {a[0]}x^{n[0]} + 
        {z[0]}*{c}e^({b[1]}*x+{b[0]})   }$

\n

\n

$\\displaystyle f'(x)=\\;$[[0]]

\n

\n

Bitte beachten:

\n", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": true, "customName": "Ableitungsregeln", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Die Ableitung einer Potenzfunktionen wird gebildet mit

\n

\\[ f(x) = x^n \\Rightarrow f'(x) = n \\cdot x^{n-1}  \\]

\n

Die Ableitung einer Exponentialfunktion erfolgt mit die Kettenregel

\n

\\[ f(x) = e^{kx+b} \\Rightarrow f'(x) = k \\cdot e^{kx+b} \\]

\n

Mit der Faktorregel

\n

\\[ f(x) = a \\cdot g(x) \\Rightarrow f'(x) = a \\cdot g'(x) \\]

\n

und der Summenregel

\n

\\[ f(x) =  g(x) + h(x) \\Rightarrow f'(x) = g'(x) + h'(x)\\]

\n

können Linearkombinationen von Funktionen abgeleitet werden.

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b[1]}*{c}e^({b[1]}*x+{b[0]}) + {a[1]}*{n[1]}x^({n[1]}-1) + {a[0]}*{n[0]}x^({n[0]}-1)", "answerSimplification": "std,!noLeadingMinus", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": true, "browse": false, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": false, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "

Hier üben Sie die Ableitungsregeln. Insgesamt werden Sie

\n\n

ableiten.

\n

Auf der linken Seite ist das Menü zur Steuerung. Dort können Sie jeweils zur nächsten Aufgabe gehen oder am Schluß den Test beenden.

\n

Unter Tipps finden Sie die Ableitungsregeln. Wenn Sie die Antworten aufdecken, müssen Sie nach unten scrollen. Die Lösung steht unter den Tipps.

\n

Versuchen Sie die Zahlen nicht als Dezimalzahlen sondern als Brüche einzugeben bzw. als Ihre persönliche Herausforderung als gekürzte Brüche.

\n

Da Sie hier grundlegende Fähigkeiten üben ist eine Bestehensgrenze von 80% eingestellt. Diese Grenze dient im Wesentlichen Ihrer Information.

\n

Viel Erfolg!

", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": []}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Helge M\u00fcnnich", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1885/"}], "extensions": [], "custom_part_types": [], "resources": []}