// Numbas version: exam_results_page_options {"name": "E&M 9: Toroidal solenoid quiz", "metadata": {"description": "

Practice questions for the toroidal solenoid.

", "licence": "All rights reserved"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "questions": [{"name": "Characteristics of a toriodal solenoid", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}], "tags": ["energy", "field", "flux", "inductance", "mag", "reluctance", "solenoid", "tut2"], "metadata": {"description": "A series of calculations and formulae for the characteristics of a toriodal solenoid operating as an inductor.", "licence": "All rights reserved"}, "statement": "

A toriodal solenoid is constructed to act as an inductor.  It has the following properties:

\n\n

When entering formulae use only the above symbols along with the symbol for permeability of free space, $\\mu_0$ (mu_0), the magnetic flux, $\\phi$ (phi), the magnetic flux density, $B$, the magnetising field strength, $H$, the flux linkage, $\\Psi$ (psi), the inductance, $L$, the reluctance, $S$, and the stored energy, $U$.  In each case use the simplest formula based upon the quantity from the previous part.

\n

When providing numerical answers you may express them using scientific notation.  Express values to four significant figures and use the values of physical constants as provided in the course notes.

", "advice": "

This question is an example of a series of linked quantities. 

\n

${\\rm MMF}= N i=${mmf} Amps

\n

$|H|=\\displaystyle{{\\rm MMF}\\over {\\rm path~length}}=\\displaystyle{Ni\\over2\\pi R}=${Hfield} A/m

\n

$|B|=\\mu_0\\mu_r|H|=\\mu|H|=${Bfield} T

\n

$\\phi=B A=${phi} Wb

\n

$\\Psi = N \\phi=${Psi} Wb

\n

$L = \\displaystyle{\\Psi\\over i}=${inductance} Henrys

\n

$\\text{Stored energy}={1\\over2}Li^2=${energy} Joules

\n

The field that a given ferro-magnetic material can amplify is limited to its saturation value.  Raising the current beyond this point does not increase the flux density beyond the base-line $\\mu_0$ level.  If we know the saturation field, $B_{\\rm sat}$, then we can determine the current since we can re-arrange the formulae above to give

\n

$B_{\\rm sat}=\\mu H=\\displaystyle{\\mu N i_{\\rm sat}\\over 2\\pi R}\\Rightarrow i_{\\rm sat}=\\displaystyle{2\\pi RB_{\\rm sat}\\over \\mu_0 \\mu_r N}=${isat} Amps

\n

The flux-linkage rises up to the point of saturation, so a current increase beyond this point simply reduces the inductance (since $L=\\Psi_{\\rm sat}/i$).

", "rulesets": {}, "variables": {"mmf": {"name": "mmf", "group": "Ungrouped variables", "definition": "turns * current", "description": "

Calculated MMF, Amps.

", "templateType": "anything"}, "xsection": {"name": "xsection", "group": "Ungrouped variables", "definition": "pi * rcore^2", "description": "

Cross-sectional area of core (m^2).

", "templateType": "anything"}, "rcore": {"name": "rcore", "group": "Ungrouped variables", "definition": "random(0.01..0.02#0.01)", "description": "

Core radius in metres.

", "templateType": "anything"}, "rring": {"name": "rring", "group": "Ungrouped variables", "definition": "rcore+random(0.02..0.03#0.01)", "description": "

Ring radius in metres.

", "templateType": "anything"}, "Bfield": {"name": "Bfield", "group": "Ungrouped variables", "definition": "mur * mu0 * Hfield", "description": "", "templateType": "anything"}, "reluctance": {"name": "reluctance", "group": "Ungrouped variables", "definition": "turns^2/inductance", "description": "

Calculated inductance (H^-1)

", "templateType": "anything"}, "phi": {"name": "phi", "group": "Ungrouped variables", "definition": "Bfield*xsection", "description": "

Calculated flux (T).

", "templateType": "anything"}, "energy": {"name": "energy", "group": "Ungrouped variables", "definition": "0.5*inductance*current^2", "description": "

Calculated stored energy (J).

", "templateType": "anything"}, "turns": {"name": "turns", "group": "Ungrouped variables", "definition": "random(300..500#20)", "description": "

Number of turns in the solenoid.

", "templateType": "anything"}, "psi": {"name": "psi", "group": "Ungrouped variables", "definition": "turns * phi", "description": "

Flux linkage, Wb

", "templateType": "anything"}, "Bsat": {"name": "Bsat", "group": "Ungrouped variables", "definition": "Bfield+random(0.8..1.2#0.1)", "description": "

Flux density at which the ferrite core 'saturates' in Tesla.

", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(0.5..1.5#0.1)", "description": "

Current in the coil (Amps)

", "templateType": "anything"}, "mu": {"name": "mu", "group": "Ungrouped variables", "definition": "mur * mu0", "description": "

Total permeability.

", "templateType": "anything"}, "mu0": {"name": "mu0", "group": "Ungrouped variables", "definition": "pi*4*10^(-7)", "description": "

Permeability of free space, H/m

", "templateType": "anything"}, "inductance": {"name": "inductance", "group": "Ungrouped variables", "definition": "psi/current", "description": "

Calculated inductance (Henry)

", "templateType": "anything"}, "mur": {"name": "mur", "group": "Ungrouped variables", "definition": "random(80..160#10)", "description": "

Relative permeability of the core.

", "templateType": "anything"}, "isat": {"name": "isat", "group": "Ungrouped variables", "definition": "Bsat * 2 * pi * rring/(mu *turns)", "description": "

Calculated current to achieve saturated B-field (Amps)

", "templateType": "anything"}, "Hfield": {"name": "Hfield", "group": "Ungrouped variables", "definition": "mmf / (2 pi rring)", "description": "

Calculated H-field, A/m.

", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Bfield", "Bsat", "current", "energy", "Hfield", "inductance", "isat", "mmf", "mu", "mu0", "mur", "phi", "psi", "rcore", "reluctance", "rring", "turns", "xsection"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "MMF", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The mathematical expression for the MMF is ${\\rm MMF} =$[[0]].

\n

The value of the MMF is [[1]] Amps.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "MMF formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "N i", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "n", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "MMF value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "mmf*0.95", "maxValue": "mmf*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetising field strength", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The mathematical expression for the magnetising field strength in the core is $|H| =$[[0]].

\n

The value of $|H|$ is [[1]] Amps/m.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "H formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "N i / (2 pi R)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "n", "value": ""}, {"name": "r", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "H value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Hfield*0.95", "maxValue": "Hfield*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetic flux density", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The mathematical expression for the magnetic flux density in the core is $|B| =$[[0]].

\n

The value of $|B|$ is [[1]] Tesla.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "B formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "mu_0 mu_r H", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "h", "value": ""}, {"name": "mu_0", "value": ""}, {"name": "mu_r", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "B value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Bfield*0.95", "maxValue": "Bfield*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetic flux", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The mathematical expression for the magnetic flux in the core is $\\phi =$[[0]].

\n

The value of $\\phi$ is [[1]] Wb.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "$\\phi$ formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "B A", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "a", "value": ""}, {"name": "b", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "$\\phi$ value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "phi*0.95", "maxValue": "phi*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Flux linkage", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The mathematical expression for the flux linkage with the coil is $\\Psi =$[[0]].

\n

The value of $\\Psi$ is [[1]] Wb.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "$\\Psi$ formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "phi N", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "n", "value": ""}, {"name": "phi", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "$\\Psi$ value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "psi*0.95", "maxValue": "psi*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Inductance", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The mathematical expression for the solenoid inductance is $L =$[[0]].

\n

The value of $L$ is [[1]] Henrys.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Inductance formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "psi / i", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "psi", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "L value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "inductance*0.95", "maxValue": "inductance*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Reluctance", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The mathematical expression for the solenoid reluctance is $S =$[[0]].

\n

The value of $S$ is [[1]] H$^{-1}$.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Reluctance formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "N^2/L", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "l", "value": ""}, {"name": "n", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "S value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "reluctance*0.95", "maxValue": "reluctance*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Stored energy", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The mathematical expression for the energy stored by the solenoid is $U =$[[0]].

\n

The value of $U$ is [[1]] Joules.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Energy formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "1/2 L i^2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "l", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "Energy value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "energy*0.95", "maxValue": "energy*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Current for saturated field", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The ferrite core saturates at a flux density of {Bsat} T.

\n

Determine the mathematical expression for the current that would produce this $B$-field: $i_{\\rm sat} =$[[0]].

\n

The value of $i_{\\rm sat}$ is [[1]] Amps.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Current formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "B 2 pi R /( mu_0 mu_r N)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "b", "value": ""}, {"name": "mu_0", "value": ""}, {"name": "mu_r", "value": ""}, {"name": "n", "value": ""}, {"name": "r", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "Current value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "isat*0.95", "maxValue": "isat*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": true, "customName": "Post saturation inductance", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If the current is increased above the value that produces the saturated $B$-field, what is the impact upon the inductance?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "3", "showCellAnswerState": true, "choices": ["It continues to increase.", "It saturates (it remains constant)", "It starts to decrease."], "matrix": [0, 0, "1"], "distractors": ["No - the $\\Psi$ is a maximum and the inductance is inversely proportional to $i$.", "No - the $\\Psi$ is a maximum and the inductance is inversely proportional to $i$.", "Yes, because $\\Psi$ is a maximum and the inductance is inversely proportional to $i$."]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Simple toriodal solenoid formulae and values", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}], "tags": [], "metadata": {"description": "Computation of quantities in a sequence of linked equations.", "licence": "All rights reserved"}, "statement": "

A torus made of a material with a relative permeability of {mur} has a wire wound around it {turns} times. The torus has circular cross section of area {areacm} cm$^2$ and the ring has an overall radius of {radius} cm. This solenoid is then connected to a power supply, and a current of {current} Amps is passed through the wire.

\n

When providing numerical answers you may express them using scientific notation.  Express values to four significant figures and use the values of physical constants as provided in the course notes.

", "advice": "

This question is an example of a series of linked quantities. 

\n

${\\rm MMF}= N i=${mmf} Amps

\n

$|H|=\\displaystyle{{\\rm MMF}\\over {\\rm path~length}}=\\displaystyle{Ni\\over2\\pi R}=${Hfield} A/m

\n

$|B|=\\mu_0\\mu_r|H|=\\mu|H|=${Bfield} T

\n

$\\phi=B A=${phi} Wb

\n

$\\Psi = N \\phi=${Psi} Wb

\n

$L = \\displaystyle{\\Psi\\over i}=${inductance} Henrys

\n

$\\text{Stored energy}={1\\over2}Li^2=${energy1} Joules

\n

In the redesign questions, it's simplest to write out the full equation dependence of the quantity being sought upon the variable being changed.

\n

For the energy dependence upon the number of turns, we can write

\n

$\\displaystyle \\text{Stored energy}={1\\over2}Li^2={1\\over 2}{\\Psi\\over i}i^2={1\\over 2}{N\\phi}i={1\\over 2}NBAi={1\\over 2}N\\mu HAi={1\\over 2}N\\mu {Ni\\over 2\\pi R}Ai={\\mu Ai^2 \\over 4\\pi R}N^2$

\n

Thus, the energy stored is proportional to the number of turns squared, so, say, to increase the stored energy by a factor of 4 one would need to double the number of turns.  This may not be feasible as there may be space constraints, and an increased number of turns will increase the electrical resistance of the coil.

", "rulesets": {}, "variables": {"pathlength": {"name": "pathlength", "group": "Ungrouped variables", "definition": "2*pi*rring", "description": "

Magnetic path length, m.

", "templateType": "anything"}, "energy2": {"name": "energy2", "group": "Ungrouped variables", "definition": "siground(energy1*4,2)", "description": "

Scaled up energy target, Joules.

", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(0.1..1#0.1)", "description": "

Current through the core, Amps.

", "templateType": "anything"}, "newturns": {"name": "newturns", "group": "Ungrouped variables", "definition": "precround(sqrt(2*pathlength*energy2/(current^2*mu0*mur*area)),0)", "description": "

Number of turns required to yield higher energy.

", "templateType": "anything"}, "newmur": {"name": "newmur", "group": "Ungrouped variables", "definition": "newperm/mu0", "description": "

Revised relative permeability required for higher energy storage.

", "templateType": "anything"}, "radius": {"name": "radius", "group": "Ungrouped variables", "definition": "rring*100", "description": "

Radius of ring in cm.

", "templateType": "anything"}, "energy1": {"name": "energy1", "group": "Ungrouped variables", "definition": "siground(0.5*inductance*current^2,4)", "description": "

Stored energy under initial condtions, Joules.

", "templateType": "anything"}, "newperm": {"name": "newperm", "group": "Ungrouped variables", "definition": "siground((2*pathlength*energy2/(turns^2*current^2*area)),4)", "description": "

Revised permeability for higher energy storage, H/m.

", "templateType": "anything"}, "areacm": {"name": "areacm", "group": "Ungrouped variables", "definition": "siground(area*10^4,4)", "description": "

Cross sectional areas in cm^2.

", "templateType": "anything"}, "hfield": {"name": "hfield", "group": "Ungrouped variables", "definition": "mmf/pathlength", "description": "

Magnetising field strength in A/m.

", "templateType": "anything"}, "psi": {"name": "psi", "group": "Ungrouped variables", "definition": "phi*turns", "description": "

Flux linkage, Wb.

", "templateType": "anything"}, "turns": {"name": "turns", "group": "Ungrouped variables", "definition": "random(1000..2000)", "description": "

No. of turns of wire wrapped around the core.

", "templateType": "anything"}, "inductance": {"name": "inductance", "group": "Ungrouped variables", "definition": "psi/current", "description": "

Inductance of coil, Henrys.

", "templateType": "anything"}, "mmf": {"name": "mmf", "group": "Ungrouped variables", "definition": "turns current", "description": "

Magnetomotive force in Amps.

", "templateType": "anything"}, "area": {"name": "area", "group": "Ungrouped variables", "definition": "pi rcore^2", "description": "

cross-sectional area of core in m^2.

", "templateType": "anything"}, "bfield": {"name": "bfield", "group": "Ungrouped variables", "definition": "hfield*mur*mu0", "description": "

Magnetic flux density in Telsa.

", "templateType": "anything"}, "mu0": {"name": "mu0", "group": "Ungrouped variables", "definition": "4*pi*10^-7", "description": "

Permeability of free space in H/m

", "templateType": "anything"}, "phi": {"name": "phi", "group": "Ungrouped variables", "definition": "bfield*area", "description": "

Magnetic flux passing through the core, Wb.

", "templateType": "anything"}, "newcurrent": {"name": "newcurrent", "group": "Ungrouped variables", "definition": "siground(sqrt(2*pathlength*energy2/(turns^2*mu0*mur*area)),4)", "description": "

Revised current required to increase stored energy, Amps.

", "templateType": "anything"}, "rring": {"name": "rring", "group": "Ungrouped variables", "definition": "rcore+random(0.5..1.5)*0.01", "description": "

Radius of torus in m.

", "templateType": "anything"}, "rcore": {"name": "rcore", "group": "Ungrouped variables", "definition": "random(0.5..1.5#0.1)*0.01", "description": "

radius of core in m.

", "templateType": "anything"}, "mur": {"name": "mur", "group": "Ungrouped variables", "definition": "random(90..150#5)", "description": "

Relative permeability of core.

", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["area", "areacm", "bfield", "current", "energy1", "energy2", "hfield", "inductance", "mmf", "mu0", "mur", "newcurrent", "newturns", "pathlength", "phi", "psi", "radius", "rcore", "rring", "turns", "newperm", "newmur"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Magnetomotive force", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the magnetomotive force (MMF).

\n

MMF$=$ [[0]] Amps

\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "mmf", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "mmf*0.995", "maxValue": "mmf*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetising field strength", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the magnetising field strength.

\n

$|\\vec{H}|=$ [[0]] Amps/m

\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "H", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "hfield*0.995", "maxValue": "hfield*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetic flux density", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the magnetic flux density.

\n

$|\\vec{B}|=$ [[0]] Tesla

\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "B", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "bfield*0.995", "maxValue": "bfield*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetic flux in the core", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the magnetic flux in the core.

\n

$\\phi=$ [[0]] Wb

\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "phi", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "phi*0.995", "maxValue": "phi*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Flux linking the coil", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the magnetic flux linking the coil (the flux linkage).

\n

$\\Psi=$ [[0]] Wb

\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "phi", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "psi*0.995", "maxValue": "psi*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Inductance", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the coil inductance.

\n

$L=$ [[0]] Henrys

\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "L", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "inductance*0.995", "maxValue": "inductance*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The solenoid as stated above stores {energy1} Joules of energy.  However, for the application that the designer has in mind it needs to store at least {energy2} Joules.  The plan is to change one part of the solenoid design.

"}, {"type": "gapfill", "useCustomName": true, "customName": "Redesign option 1", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If in order to increase the energy storage the designer will increase the number of turns, how many will be needed?

\n

[[0]] turns

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Turns", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "newturns*0.995", "maxValue": "newturns*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Redesign option 2", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Alternatively, if in order to increase the energy storage the designer will increase the current, what value of current will be required?

\n

[[0]] Amps

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Current", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "newcurrent*0.995", "maxValue": "newcurrent*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Redesign option 3", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Finally, if in order to increase the energy storage the designer will swap the torus for a material with a different permeability, what value is required?

\n

$\\mu=$ [[0]] H/m

\n

$\\mu_r=$ [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Permeability", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "newperm*0.995", "maxValue": "newperm*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Relative permeability", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "newmur*0.995", "maxValue": "newmur*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Solenoid - reversed order question", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}], "tags": ["field", "flux", "mag", "mid1819", "solenoid"], "metadata": {"description": "Combine familiar questions in a slightly unfamiliar order.", "licence": "All rights reserved"}, "statement": "

A toroidal solenoid is constructed using an iron core, {turns} turns of wire carrying a current of {current} A. The torus has a circular cross-section of area {areacm} cm2, and diameter of {diametercm} cm.

\n

When providing numerical answers you may express them using scientific notation.  Express values to four significant figures and use the values of physical constants as provided in the course notes.

", "advice": "

The equations linking the properties of a solenoid inductor should be familiar.  This question starts in the familiar way,

\n

$\\displaystyle {\\rm MMF}=Ni$

\n

$\\displaystyle |\\vec{H}|= {\\rm MMF\\over path~length}={Ni\\over \\pi d}$,

\n

where $d$ is the diameter of the ring. However, then the pathway differs in that we are provided with $\\phi$, and asked to calculate $B$ and $\\mu_r$.  This requires some alegbra

\n

$\\displaystyle \\phi =|\\vec{B}| A \\Rightarrow|\\vec{B}| = {\\phi\\over A}$

\n

and

\n

$\\displaystyle |\\vec{B}|= \\mu |\\vec{H}| = \\mu_0\\mu_r |\\vec{H}| \\Rightarrow \\mu_r = {|\\vec{B}|\\over \\mu_0|\\vec{H}| }$.

", "rulesets": {}, "variables": {"mmf": {"name": "mmf", "group": "Ungrouped variables", "definition": "turns current", "description": "

Magnetomotive force, A

", "templateType": "anything"}, "bfield": {"name": "bfield", "group": "Ungrouped variables", "definition": "flux/area", "description": "

Magnetic flux density, T.

", "templateType": "anything"}, "hfield": {"name": "hfield", "group": "Ungrouped variables", "definition": "mmf/(pi diameter)", "description": "

Magnetising field strength, A/m.

", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(0.5..1.0#0.05)", "description": "

Current throught the solenoid, A.

", "templateType": "anything"}, "diameter": {"name": "diameter", "group": "Ungrouped variables", "definition": "diametercm/100", "description": "

Diameter of the ring in m.

", "templateType": "anything"}, "areacm": {"name": "areacm", "group": "Ungrouped variables", "definition": "random(0.7..1.3#0.1)", "description": "

Cross-sectional area of core, cm^2.

", "templateType": "anything"}, "area": {"name": "area", "group": "Ungrouped variables", "definition": "areacm/10000", "description": "

Cross-sectional area of core, m^2.

", "templateType": "anything"}, "turns": {"name": "turns", "group": "Ungrouped variables", "definition": "random(60..90)*10", "description": "

Number of turns.

", "templateType": "anything"}, "flux": {"name": "flux", "group": "Ungrouped variables", "definition": "fluxu*10^-6", "description": "

Flux through core in Wb.

", "templateType": "anything"}, "fluxu": {"name": "fluxu", "group": "Ungrouped variables", "definition": "random(5..15)", "description": "

Flux through core in micro-Wb.

", "templateType": "anything"}, "mu0": {"name": "mu0", "group": "Ungrouped variables", "definition": "4 pi *10^-7", "description": "

Permeability of free space, H/m.

", "templateType": "anything"}, "diametercm": {"name": "diametercm", "group": "Ungrouped variables", "definition": "random(7..12)", "description": "

Diameter of the ring in cm.

", "templateType": "anything"}, "mur": {"name": "mur", "group": "Ungrouped variables", "definition": "bfield/hfield /mu0", "description": "

Relative permeability of the core.

", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["area", "areacm", "bfield", "current", "diameter", "diametercm", "flux", "fluxu", "hfield", "mmf", "mu0", "mur", "turns"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "MMF", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Calculate the magnetomotive force generate by the current in the coil.

\n

MMF= [[0]] A

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "mmf", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "mmf*0.995", "maxValue": "mmf*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "H-field", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Calculate the magnetising field strength in the core.

\n

$|\\vec{H}|=$[[0]] A/m

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "hfield", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [{"variable": "mmf", "part": "p0g0", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "hfield*0.995", "maxValue": "hfield*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "B-field", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

If the flux passing through the core is {fluxu}$\\mu$Wb, calculate the magnetic flux density in the core.

\n

$|\\vec{B}|=$[[0]] T

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "bfield", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "bfield*0.995", "maxValue": "bfield*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Relative permeability", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Hence, calculate the relative permeability of the core.

\n

$\\mu_r=$[[0]] 

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "mur", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [{"variable": "bfield", "part": "p2g0", "must_go_first": false}, {"variable": "hfield", "part": "p1g0", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "mur*0.995", "maxValue": "mur*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}]}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": []}, "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}], "extensions": [], "custom_part_types": [], "resources": []}