// Numbas version: finer_feedback_settings {"name": "Digital Tutorial: Week 7", "metadata": {"description": "
Practice questions for the toroidal solenoid.
", "licence": "All rights reserved"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "questions": [{"name": "Time varying current - Faraday's law", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}], "tags": ["faraday", "flux", "mag", "solenoid", "tut2"], "metadata": {"description": "Calculation of physical quantities, differentiation and recognition/recall of mathematical relationships.", "licence": "All rights reserved"}, "statement": "A coil comprised from {turns} turns is wrapped around a ferrite core carrying a peak flux density of {Bfield} T varying sinusoidally at a frequency of {frequency} kHz. The cross sectional area of the core is {xsection} mm2.
\nUse the values of constant provided in the course when performing calculations. Submit numerical answers to four significant figures and you may use scientific notation.
", "advice": "The point to this question is that we need a time varying field to induce a current. We're told the flux density varies sinusoidally with a given frequency, $f$, and provided with a peak amplitude, $B_0$. We're also told that the flux is zero at $t=0$s. We can therefore express the $B$-field as
\n$B(t)=B_0 \\sin(\\omega t+\\gamma)$
\nwhere $\\omega$ is the angular frequency $2 \\pi f$, and $\\gamma$ is the phase angle. Since the flux (and therefore the flux density) is zero at $t=0$s, the phase angle can be taken to be zero or $\\pi$ radians. We can choose zero for simplicity in this case.
\nThe flux is related to the flux density as $\\phi(t)=B(t)A$, and use the relationship that the flux linkage is $\\Psi=N\\phi$ to write $\\Psi(t)$.
\nApplying Faraday's Law requires a derivitive of the flux linkage, which is easily obtained as
\n$\\displaystyle{{d\\Psi\\over dt}={d\\over dt}N\\phi={d\\over dt}NAB(t)=NA{dB(t)\\over dt} = N A B_0 \\omega \\cos(\\omega t)}$.
\nHence $|V|=NA\\omega B_0=2\\pi NAfB_0$.
", "rulesets": {}, "variables": {"Bfield": {"name": "Bfield", "group": "Ungrouped variables", "definition": "random(0.05..0.25#0.05)", "description": "Peak B-field amplitude in T.
", "templateType": "anything"}, "xsection": {"name": "xsection", "group": "Ungrouped variables", "definition": "random(25..50)", "description": "Cross-sectional area of ferrite core in mm2.
", "templateType": "anything"}, "vmax": {"name": "vmax", "group": "Ungrouped variables", "definition": "omega*turns*flux", "description": "Calculated amplitude of sinusoidally varying induced voltage, Volts.
", "templateType": "anything"}, "frequency": {"name": "frequency", "group": "Ungrouped variables", "definition": "random(5..20)", "description": "Sinusoidal frequency in kHz.
", "templateType": "anything"}, "turns": {"name": "turns", "group": "Ungrouped variables", "definition": "random(200..300#10)", "description": "Number of turns in the solenoid.
", "templateType": "anything"}, "omega": {"name": "omega", "group": "Ungrouped variables", "definition": "2*pi*frequency*1000", "description": "Caclulated angular frequency in cycles/s.
", "templateType": "anything"}, "flux": {"name": "flux", "group": "Ungrouped variables", "definition": "Bfield*xsection*10^(-6)", "description": "Calculated flux in Wb (note conversion of area from mm2 to m2)
", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Bfield", "flux", "frequency", "omega", "turns", "vmax", "xsection"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Flux in the ferrite core", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What the mathematical expression for the maximum flux in the ferrite core in terms of one or more of the following variables: $B$ (peak magnetic flux density), $\\mu$ (permeability), $A$ (cross-sectional area), $N$ (number of turns) and $f$ (frequency).
\n$\\phi_m=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Flux", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "B A", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "a", "value": ""}, {"name": "b", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Flux value", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of the flux in this case?
\n$\\phi_m=$[[0]] Wb
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Flux value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "flux*0.95", "maxValue": "flux*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Time dependence", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the mathematical form of the magnetic flux as a function of time ($t$), frequency ($f$), and peak flux ($\\phi_m$)? You may assume that the flux is zero at $t=0$s.
\n$\\phi(t)=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Time dependence", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "phi_m sin(2 pi f t)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "f", "value": ""}, {"name": "phi_m", "value": ""}, {"name": "t", "value": ""}]}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": true, "customName": "Flux linkage", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the relationship between the flux, $\\phi$ and flux-linkage, $\\Psi$ for the coil?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "2", "showCellAnswerState": true, "choices": ["$\\Psi = N\\phi$", "$\\phi=N\\Psi$", "$\\Psi=\\displaystyle{N^2\\over\\phi}$", "$\\Psi \\times \\phi = {\\rm constant}$", "$\\Psi=\\displaystyle{d\\over dt}\\phi(t)$", "$\\Psi=\\displaystyle{1\\over2}\\phi i^2$"], "matrix": ["1", 0, 0, 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "gapfill", "useCustomName": true, "customName": "Maximum voltage", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Using Faraday's Law,
\n$|V|=\\displaystyle{\\left|{{d\\Psi}\\over{dt}}\\right|},$
\nthat relates the voltage flux linkage, determine the amplitude of the induced voltage.
\n$V_{\\rm max}=$[[0]]Volts
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Maximum voltage", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "vmax*0.95", "maxValue": "vmax*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Characteristics of a toriodal solenoid", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}], "tags": ["energy", "field", "flux", "inductance", "mag", "reluctance", "solenoid", "tut2"], "metadata": {"description": "A series of calculations and formulae for the characteristics of a toriodal solenoid operating as an inductor.", "licence": "All rights reserved"}, "statement": "A toriodal solenoid is constructed to act as an inductor. It has the following properties:
\nWhen entering formulae use only the above symbols along with the symbol for permeability of free space, $\\mu_0$ (mu_0), the magnetic flux, $\\phi$ (phi), the magnetic flux density, $B$, the magnetising field strength, $H$, the flux linkage, $\\Psi$ (psi), the inductance, $L$, the reluctance, $S$, and the stored energy, $U$. In each case use the simplest formula based upon the quantity from the previous part.
\nWhen providing numerical answers you may express them using scientific notation. Express values to four significant figures and use the values of physical constants as provided in the course notes.
", "advice": "This question is an example of a series of linked quantities.
\n${\\rm MMF}= N i=${mmf} Amps
\n$|H|=\\displaystyle{{\\rm MMF}\\over {\\rm path~length}}=\\displaystyle{Ni\\over2\\pi R}=${Hfield} A/m
\n$|B|=\\mu_0\\mu_r|H|=\\mu|H|=${Bfield} T
\n$\\phi=B A=${phi} Wb
\n$\\Psi = N \\phi=${Psi} Wb
\n$L = \\displaystyle{\\Psi\\over i}=${inductance} Henrys
\n$\\text{Stored energy}={1\\over2}Li^2=${energy} Joules
\nThe field that a given ferro-magnetic material can amplify is limited to its saturation value. Raising the current beyond this point does not increase the flux density beyond the base-line $\\mu_0$ level. If we know the saturation field, $B_{\\rm sat}$, then we can determine the current since we can re-arrange the formulae above to give
\n$B_{\\rm sat}=\\mu H=\\displaystyle{\\mu N i_{\\rm sat}\\over 2\\pi R}\\Rightarrow i_{\\rm sat}=\\displaystyle{2\\pi RB_{\\rm sat}\\over \\mu_0 \\mu_r N}=${isat} Amps
\nThe flux-linkage rises up to the point of saturation, so a current increase beyond this point simply reduces the inductance (since $L=\\Psi_{\\rm sat}/i$).
", "rulesets": {}, "variables": {"mmf": {"name": "mmf", "group": "Ungrouped variables", "definition": "turns * current", "description": "Calculated MMF, Amps.
", "templateType": "anything"}, "xsection": {"name": "xsection", "group": "Ungrouped variables", "definition": "pi * rcore^2", "description": "Cross-sectional area of core (m^2).
", "templateType": "anything"}, "rcore": {"name": "rcore", "group": "Ungrouped variables", "definition": "random(0.01..0.02#0.01)", "description": "Core radius in metres.
", "templateType": "anything"}, "rring": {"name": "rring", "group": "Ungrouped variables", "definition": "rcore+random(0.02..0.03#0.01)", "description": "Ring radius in metres.
", "templateType": "anything"}, "Bfield": {"name": "Bfield", "group": "Ungrouped variables", "definition": "mur * mu0 * Hfield", "description": "", "templateType": "anything"}, "reluctance": {"name": "reluctance", "group": "Ungrouped variables", "definition": "turns^2/inductance", "description": "Calculated inductance (H^-1)
", "templateType": "anything"}, "phi": {"name": "phi", "group": "Ungrouped variables", "definition": "Bfield*xsection", "description": "Calculated flux (T).
", "templateType": "anything"}, "energy": {"name": "energy", "group": "Ungrouped variables", "definition": "0.5*inductance*current^2", "description": "Calculated stored energy (J).
", "templateType": "anything"}, "turns": {"name": "turns", "group": "Ungrouped variables", "definition": "random(300..500#20)", "description": "Number of turns in the solenoid.
", "templateType": "anything"}, "psi": {"name": "psi", "group": "Ungrouped variables", "definition": "turns * phi", "description": "Flux linkage, Wb
", "templateType": "anything"}, "Bsat": {"name": "Bsat", "group": "Ungrouped variables", "definition": "Bfield+random(0.8..1.2#0.1)", "description": "Flux density at which the ferrite core 'saturates' in Tesla.
", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(0.5..1.5#0.1)", "description": "Current in the coil (Amps)
", "templateType": "anything"}, "mu": {"name": "mu", "group": "Ungrouped variables", "definition": "mur * mu0", "description": "Total permeability.
", "templateType": "anything"}, "mu0": {"name": "mu0", "group": "Ungrouped variables", "definition": "pi*4*10^(-7)", "description": "Permeability of free space, H/m
", "templateType": "anything"}, "inductance": {"name": "inductance", "group": "Ungrouped variables", "definition": "psi/current", "description": "Calculated inductance (Henry)
", "templateType": "anything"}, "mur": {"name": "mur", "group": "Ungrouped variables", "definition": "random(80..160#10)", "description": "Relative permeability of the core.
", "templateType": "anything"}, "isat": {"name": "isat", "group": "Ungrouped variables", "definition": "Bsat * 2 * pi * rring/(mu *turns)", "description": "Calculated current to achieve saturated B-field (Amps)
", "templateType": "anything"}, "Hfield": {"name": "Hfield", "group": "Ungrouped variables", "definition": "mmf / (2 pi rring)", "description": "Calculated H-field, A/m.
", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Bfield", "Bsat", "current", "energy", "Hfield", "inductance", "isat", "mmf", "mu", "mu0", "mur", "phi", "psi", "rcore", "reluctance", "rring", "turns", "xsection"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "MMF", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The mathematical expression for the MMF is ${\\rm MMF} =$[[0]].
\nThe value of the MMF is [[1]] Amps.
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "MMF formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "N i", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "n", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "MMF value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "mmf*0.95", "maxValue": "mmf*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetising field strength", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The mathematical expression for the magnetising field strength in the core is $|H| =$[[0]].
\nThe value of $|H|$ is [[1]] Amps/m.
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "H formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "N i / (2 pi R)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "n", "value": ""}, {"name": "r", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "H value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Hfield*0.95", "maxValue": "Hfield*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetic flux density", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The mathematical expression for the magnetic flux density in the core is $|B| =$[[0]].
\nThe value of $|B|$ is [[1]] Tesla.
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "B formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "mu_0 mu_r H", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "h", "value": ""}, {"name": "mu_0", "value": ""}, {"name": "mu_r", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "B value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Bfield*0.95", "maxValue": "Bfield*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetic flux", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The mathematical expression for the magnetic flux in the core is $\\phi =$[[0]].
\nThe value of $\\phi$ is [[1]] Wb.
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "$\\phi$ formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "B A", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "a", "value": ""}, {"name": "b", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "$\\phi$ value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "phi*0.95", "maxValue": "phi*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Flux linkage", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The mathematical expression for the flux linkage with the coil is $\\Psi =$[[0]].
\nThe value of $\\Psi$ is [[1]] Wb.
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "$\\Psi$ formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "phi N", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "n", "value": ""}, {"name": "phi", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "$\\Psi$ value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "psi*0.95", "maxValue": "psi*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Inductance", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The mathematical expression for the solenoid inductance is $L =$[[0]].
\nThe value of $L$ is [[1]] Henrys.
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Inductance formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "psi / i", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "psi", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "L value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "inductance*0.95", "maxValue": "inductance*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Reluctance", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The mathematical expression for the solenoid reluctance is $S =$[[0]].
\nThe value of $S$ is [[1]] H$^{-1}$.
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Reluctance formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "N^2/L", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "l", "value": ""}, {"name": "n", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "S value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "reluctance*0.95", "maxValue": "reluctance*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Stored energy", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The mathematical expression for the energy stored by the solenoid is $U =$[[0]].
\nThe value of $U$ is [[1]] Joules.
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Energy formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "1/2 L i^2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "l", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "Energy value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "energy*0.95", "maxValue": "energy*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Current for saturated field", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The ferrite core saturates at a flux density of {Bsat} T.
\nDetermine the mathematical expression for the current that would produce this $B$-field: $i_{\\rm sat} =$[[0]].
\nThe value of $i_{\\rm sat}$ is [[1]] Amps.
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Current formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "B 2 pi R /( mu_0 mu_r N)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "b", "value": ""}, {"name": "mu_0", "value": ""}, {"name": "mu_r", "value": ""}, {"name": "n", "value": ""}, {"name": "r", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "Current value", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "isat*0.95", "maxValue": "isat*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": true, "customName": "Post saturation inductance", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "If the current is increased above the value that produces the saturated $B$-field, what is the impact upon the inductance?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "3", "showCellAnswerState": true, "choices": ["It continues to increase.", "It saturates (it remains constant)", "It starts to decrease."], "matrix": [0, 0, "1"], "distractors": ["No - the $\\Psi$ is a maximum and the inductance is inversely proportional to $i$.", "No - the $\\Psi$ is a maximum and the inductance is inversely proportional to $i$.", "Yes, because $\\Psi$ is a maximum and the inductance is inversely proportional to $i$."]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Solenoid - reversed order question", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}], "tags": ["field", "flux", "mag", "mid1819", "solenoid"], "metadata": {"description": "Combine familiar questions in a slightly unfamiliar order.", "licence": "All rights reserved"}, "statement": "A toroidal solenoid is constructed using an iron core, {turns} turns of wire carrying a current of {current} A. The torus has a circular cross-section of area {areacm} cm2, and diameter of {diametercm} cm.
\nWhen providing numerical answers you may express them using scientific notation. Express values to four significant figures and use the values of physical constants as provided in the course notes.
", "advice": "The equations linking the properties of a solenoid inductor should be familiar. This question starts in the familiar way,
\n$\\displaystyle {\\rm MMF}=Ni$
\n$\\displaystyle |\\vec{H}|= {\\rm MMF\\over path~length}={Ni\\over \\pi d}$,
\nwhere $d$ is the diameter of the ring. However, then the pathway differs in that we are provided with $\\phi$, and asked to calculate $B$ and $\\mu_r$. This requires some alegbra
\n$\\displaystyle \\phi =|\\vec{B}| A \\Rightarrow|\\vec{B}| = {\\phi\\over A}$
\nand
\n$\\displaystyle |\\vec{B}|= \\mu |\\vec{H}| = \\mu_0\\mu_r |\\vec{H}| \\Rightarrow \\mu_r = {|\\vec{B}|\\over \\mu_0|\\vec{H}| }$.
", "rulesets": {}, "variables": {"mmf": {"name": "mmf", "group": "Ungrouped variables", "definition": "turns current", "description": "Magnetomotive force, A
", "templateType": "anything"}, "bfield": {"name": "bfield", "group": "Ungrouped variables", "definition": "flux/area", "description": "Magnetic flux density, T.
", "templateType": "anything"}, "hfield": {"name": "hfield", "group": "Ungrouped variables", "definition": "mmf/(pi diameter)", "description": "Magnetising field strength, A/m.
", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(0.5..1.0#0.05)", "description": "Current throught the solenoid, A.
", "templateType": "anything"}, "diameter": {"name": "diameter", "group": "Ungrouped variables", "definition": "diametercm/100", "description": "Diameter of the ring in m.
", "templateType": "anything"}, "areacm": {"name": "areacm", "group": "Ungrouped variables", "definition": "random(0.7..1.3#0.1)", "description": "Cross-sectional area of core, cm^2.
", "templateType": "anything"}, "area": {"name": "area", "group": "Ungrouped variables", "definition": "areacm/10000", "description": "Cross-sectional area of core, m^2.
", "templateType": "anything"}, "turns": {"name": "turns", "group": "Ungrouped variables", "definition": "random(60..90)*10", "description": "Number of turns.
", "templateType": "anything"}, "flux": {"name": "flux", "group": "Ungrouped variables", "definition": "fluxu*10^-6", "description": "Flux through core in Wb.
", "templateType": "anything"}, "fluxu": {"name": "fluxu", "group": "Ungrouped variables", "definition": "random(5..15)", "description": "Flux through core in micro-Wb.
", "templateType": "anything"}, "mu0": {"name": "mu0", "group": "Ungrouped variables", "definition": "4 pi *10^-7", "description": "Permeability of free space, H/m.
", "templateType": "anything"}, "diametercm": {"name": "diametercm", "group": "Ungrouped variables", "definition": "random(7..12)", "description": "Diameter of the ring in cm.
", "templateType": "anything"}, "mur": {"name": "mur", "group": "Ungrouped variables", "definition": "bfield/hfield /mu0", "description": "Relative permeability of the core.
", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["area", "areacm", "bfield", "current", "diameter", "diametercm", "flux", "fluxu", "hfield", "mmf", "mu0", "mur", "turns"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "MMF", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "Calculate the magnetomotive force generate by the current in the coil.
\nMMF= [[0]] A
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "mmf", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "mmf*0.995", "maxValue": "mmf*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "H-field", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "Calculate the magnetising field strength in the core.
\n$|\\vec{H}|=$[[0]] A/m
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "hfield", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [{"variable": "mmf", "part": "p0g0", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "hfield*0.995", "maxValue": "hfield*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "B-field", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "If the flux passing through the core is {fluxu}$\\mu$Wb, calculate the magnetic flux density in the core.
\n$|\\vec{B}|=$[[0]] T
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "bfield", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "bfield*0.995", "maxValue": "bfield*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Relative permeability", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "Hence, calculate the relative permeability of the core.
\n$\\mu_r=$[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "mur", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [{"variable": "bfield", "part": "p2g0", "must_go_first": false}, {"variable": "hfield", "part": "p1g0", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "mur*0.995", "maxValue": "mur*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "type": "exam", "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}], "extensions": [], "custom_part_types": [], "resources": []}