// Numbas version: finer_feedback_settings {"name": "Integration Fundamentals", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": "95", "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "questions": [{"name": "INT1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}, {"name": "Gagan Aggarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/10312/"}], "tags": [], "metadata": {"description": "
Antiderivatives
\nrebel
\nrebelmaths
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Integrate the following. Use the letter C to represent an unknown constant.
", "advice": "Don't forget to include the unknown constant C.
", "rulesets": {}, "variables": {"f": {"name": "f", "group": "Ungrouped variables", "definition": "random(4,5,7,8)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(3,5,7)", "description": "", "templateType": "anything"}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "2*random(2..4)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..9 except a)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$f(x) = \\var{a}x - \\var{b}$
", "answer": "{a}x^2/2-{b}x+C", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$f(x) = \\frac{1}{\\var{c}}+ \\frac{2}{\\var{d}}x^2 - \\frac{3}{\\var{f}}x^3$
", "answer": "1/{c}x+2/(3{d})x^3-3x^4/(4{f})+C", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "INT2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Gagan Aggarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/10312/"}], "tags": [], "metadata": {"description": "Indefinite Integrals
\nrebel
\nrebelmaths
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Solve the following indefinite integrals, using $C$ to represent an unknown constant.
", "advice": "Indefinite Integrals
", "rulesets": {}, "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..9 except a except b)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1..8 except d)", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..9 except a)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "f"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\int(x^4-\\var{a}x^3+\\var{b}x-\\var{c})\\mathrm{dx}$
", "answer": "x^5/5-{a}x^4/4+{b}x^2/2-{c}x+C", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "INT3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}, {"name": "Gagan Aggarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/10312/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "s1", "m", "n", "r"], "tags": ["Calculus", "calculus", "constant of integration", "indefinite integration", "integrals", "integrating fractional powers", "integrating powers", "integration", "rebelmaths", "standard integrals", "Steps", "steps"], "advice": "\n\t \n\t \n\tUsing
\\[\\int \\;x^n\\;dx=\\frac{x^{n+1}}{n+1}+C\\] for any number $n \\neq -1$ we have
\\[\\begin{eqnarray*}\n\t \n\t \\simplify[std]{Int({c}*x^{m}+{d}*x ^ ({b} / {n}),x)} &=&\\simplify[std]{ ({c} / {m + 1}) * x ^ {m + 1} +{d}* x ^ ({b} / {n} + 1) / ({b} / {n} + 1) + C }\\\\\n\t \n\t &=&\\simplify[std]{ ({c} / {m + 1}) * x ^ {m + 1} + ({d*n} / {b + n}) * x ^ ({b + n} / {n}) + C}\n\t \n\t \\end{eqnarray*}\\]
$\\simplify[std]{f(x) = {c}x ^ {m} + {d}*x^({b}/{n})}$
\n\t\t\t$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]
\n\t\t\tInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\n\t\t\tClick on Show steps to get more information. You will not lose any marks by doing so.
\n\t\t\t \n\t\t\t", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Input all numbers as integers or fractions and not decimals.
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({c}/{m+1})x ^ {m+1} + ({d*n}/{b+n})*x^({n+b}/{n})+C", "marks": 3, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [1, 2]}], "steps": [{"prompt": "The indefinite integral of a power $x^n$ where $n\\neq -1$ is \\[\\int \\;x^n\\;dx=\\frac{x^{n+1}}{n+1}+C\\]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 0, "scripts": {}, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "\n\tIntegrate the following function $f(x)$.
\n\t
Input the constant of integration as $C$.
indefinite integration
\nFind $\\displaystyle \\int ax ^ m+ bx^{c/n}\\;dx$.
\nrebel
\nrebelmaths
\n", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "type": "exam", "contributors": [{"name": "Gagan Aggarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/10312/"}], "extensions": [], "custom_part_types": [], "resources": []}