// Numbas version: finer_feedback_settings {"name": "Differentiation by the product rule- section 6D", "metadata": {"description": "", "licence": "None specified"}, "duration": 5400, "percentPass": "0", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], []], "questions": [{"name": "Differentation: Product Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..5)", "description": "", "name": "b"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "name": "n"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "({((m * b) + (n * a))} + ({(n * b)} * x))", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "dPoly", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t
$\\simplify[dPoly]{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$
\n\t\t\tYou are given that \\[\\simplify[dPoly]{Diff(f,x,1) = ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) * g(x)}\\]
\n\t\t\tfor a polynomial $g(x)$. You have to find $g(x)$.
\n\t\t\t$g(x)=\\;$[[0]]
\n\t\t\tClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["algebraic manipulation", "checked2015", "derivative", "derivative ", "deriving a function", "differentiate", "differentiating a function", "differentiating a product of functions", "differentiation", "exponential function", "functions", "mas1601", "MAS1601", "product rule", "Steps", "steps"], "rulesets": {"std": ["all", "!collectNumbers"], "dpoly": ["std", "fractionNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t20/06/2012:
\n\t\tAdded tags.
\n\t\t4/7/2012:
Added tags.
\n\t\t31/07/2012:
\n\t\tChecked calculation.
\n\t\tAllowed no penalty on looking at Steps.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate the function $f(x)=(a + b x)^m e ^ {n x}$ using the product rule. Find $g(x)$ such that $f\\;'(x)= (a + b x)^{m-1} e ^ {n x}g(x)$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[dPoly]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[dPoly]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify{v = e ^ ({n} * x)} \\Rightarrow \\simplify{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\simplify[dPoly]{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x) = ({a} + {b} * x) ^ {m -1} * ({m * b + n * a} + {n * b} * x) * e ^ ({n} * x)}\\]
\n\t \n\t \n\t \n\tThe last step was to take out the common term $\\simplify[dPoly]{({a} + {b} * x) ^ {m -1} * e ^ ({n} * x)}$.
\n\t \n\t \n\t \n\tHence \\[\\simplify[dPoly]{g(x) = {m * b + n * a} + {n * b} * x}\\].
\n\t \n\t \n\t \n\t"}, {"name": "Differentiate product of binomial and exponential", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(2..5)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "name": "b"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "b", "s2", "s1", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x)", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t$\\simplify[std]{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\tClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["algebraic manipulation", "Calculus", "checked2015", "derivative of a product", "differentiating a product of functions", "differentiating the exponential function", "differentiation", "exponential function", "MAS1601", "product rule", "Steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t31/07/2012:
\n\t\tAdded tags.
\n\t\tImproved display of prompt.
\n\t\tChecked calculation.
\n\t\tAllowed no penalty on looking at Steps.
\n\t\tIssue with Show steps to be resolved. Has been resolved.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate the function $(a + b x)^m e ^ {n x}$ using the product rule.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = e ^ ({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x) }\\]
\n\t \n\t \n\t"}, {"name": "Differentiate product of binomial, trig, and exponential", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(2..5)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "name": "b"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "b", "s2", "s1", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{b}x * cos({b} * x+{a}) + ({n}x+{m}) * sin({b} * x+{a})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n$\\simplify[std]{f(x) = x^{m}sin({b}x + {a}) * e ^ ({n} * x)}$
\nThe answer is of the form:
\n$\\displaystyle \\frac{df}{dx}= \\simplify[std]{x^{m-1}e^({n}x)g(x)}$ for a function $g(x)$. You have to find $g(x)$
\n$g(x)=\\;$[[0]]
\nif you input a function of the form $xf(x)$ where $f(x)$ is a function, then you must input it as $x*f(x)$ with * for multiplication e.g. input $x*\\sin(ax+b)$ and not $xsin(ax+b)$.
\nClick on Show steps for more information, you will not lose any marks by doing so.
\n ", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["checked2015", "MAS1601"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t31/07/2012:
\n \t\tChecked calculation.
\n \t\tAdded tags.
\n \t\tAllowed no penalty on looking at Show steps.
\n \t\tCorrected occurences of the form xsin and xcos to x*sin, x*cos.
\n \t\tIncluded message warning about the input of functions of the form xsin etc.
\n \t\tShow steps needs to be resolved. Now resolved.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $f(x)=x^{m}\\sin(ax+b) e^{nx}$.
\nThe answer is of the form:
$\\displaystyle \\frac{df}{dx}= x^{m-1}e^{nx}g(x)$ for a function $g(x)$.
Find $g(x)$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\nThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\\[\\simplify[std]{u = x^{m}} \\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x^{m-1}}\\]
\\[\\simplify[std]{v = sin({b} * x+{a})e^({n}x)}\\Rightarrow \\simplify[std]{Diff(v,x,1) = {b} * cos({b} * x+{a})e^({n}x)+{n}sin({b}x+{a})e^({n}x)}\\]
\nHence on substituting into the product rule above we get:
\n\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{m}x^{m-1}sin({b} * x+{a})e^({n}x)+x^{m}({b} * cos({b} * x+{a}) * e ^ ({n} * x) + {n} * sin({b} * x+{a}) * e ^ ({n} * x))}\\\\ &=&\\simplify[std]{x^{m-1}e^({n}x)({b}x*cos({b}x+{a})+{n}x*sin({b}x+{a})+{m}sin({b}x+{a}))}\\\\ &=&\\simplify[std]{x^{m-1}e^({n}x)({b}x*cos({b}x+{a})+({n}x+{m})*sin({b}x+{a}))} \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{b}x*cos({b}x+{a})+({n}x+{m})*sin({b}x+{a})}$
$\\simplify[std]{f(x) = ({a} + {b} * x) ^ {m} * sin({n} * x)}$
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\tClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["Calculus", "checked2015", "differentiating a product", "differentiating trigonometric functions", "differentiation", "MAS1601", "product rule", "Steps", "trigonometric functions"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t31/07/2012:
\n\t\tAdded tags.
\n\t\tAdded description.
\n\t\tSteps problem to be addressed. Now resolved.
\n\t\tChecked calculation.OK.
\n\t\tImproved prompt display.
\n\t\tClicking on Show steps not lose any marks.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $ (a+bx) ^ {m} \\sin(nx)$
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = sin({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * cos({n} * x)}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{Diff(f,x,1) = {m*b}({a} + {b} * x) ^ {m-1} * sin({n} * x)+{n}*({a} + {b} * x) ^ {m} * cos({n} * x)}\\]
\n\t \n\t \n\t"}, {"name": "Differentiate products of hyperbolic functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b2"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..7)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "b1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "name": "a1"}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a2"}}, "ungrouped_variables": ["a", "a1", "a2", "b", "b1", "b2", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"prompt": "\n$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$
\n$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]
\n ", "scripts": {}, "gaps": [{"answer": "{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "\n$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$
\n$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]
\n ", "scripts": {}, "gaps": [{"answer": "{a}*sech({a}x+{b})^2", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "\n$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$
\n$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]
\n ", "scripts": {}, "gaps": [{"answer": "{a2} * tanh({a2} * x + {b2})", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 5, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}], "statement": "\n \n \nWrite down the derivatives of the following functions $f(x)$ .
\n \n \n \nNote that in order to input the square of a function such as $\\sinh(x)$ you have to input it as $(\\sinh(x))^2$, similarly for the other hyperbolic functions.
\n \n \n ", "tags": ["calculus", "Calculus", "chain rule", "checked2015", "cosh", "derivatives of hyperbolic functions", "differential", "differential ", "differentiate", "differentiating hyperbolic functions", "differentiation", "hyperbolic functions", "MAS1601", "mas1601", "product rule", "query", "sinh", "tanh", "tested1"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "29/06/2012:
\nAdded and edited tags.
\n19/07/2012:
\nAdded description.
\nThere is also the problem of inputting functions of the form $xf(x)$ if $n=1$ or $2$ in the first question. So have reset $n$ to between $3$ and $7$. Otherwise would have to have an instruction here (perhaps depending on value of $n$).
\nChecked calculation.
\n23/07/2012:
\nAdded tags.
\nQuestion appears to be working correctly.
\n22/12/2012:(WHF)
\nChecked calculations, OK. Added tested1 tag.
\nIf users factorise the answer to the first question they may be inputting something of the form xf(x). So may be wise to write an instruction to use x*f(x). Raised as a query via the query tag.
\n", "licence": "Creative Commons Attribution 4.0 International", "description": "
Differentiate the following functions: $\\displaystyle x ^ n \\sinh(ax + b),\\;\\tanh(cx+d),\\;\\ln(\\cosh(px+q))$
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "Here is a table of the derivatives of some of the hyperbolic functions:
\n$f(x)$ | $\\displaystyle{\\frac{df}{dx}}$ |
---|---|
$\\sinh(bx)$ | $b\\cosh(bx)$ |
$\\cosh(bx)$ | $b\\sinh(bx)$ |
$\\tanh(bx)$ | $\\simplify{b*sech(bx)^2}$ |
a) $\\displaystyle{f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}}$
\nUsing the product rule we obtain:
\n\\[\\frac{df}{dx} = \\simplify[std]{{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * cosh({a1} * x + {b1})}\\]
\nb) $\\displaystyle{f(x)=\\tanh(\\simplify[std]{{a}x+{b}})}$
\nUsing the table we can immediately write the derivative as:
\n\\[\\frac{df}{dx} = \\simplify[std]{{a}*sech({a}x+{b})^2}\\]
\nc) $\\displaystyle{f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}})}$
\nHere we employ the chain rule. We set $u=\\cosh(\\simplify[std]{{a2}x+{b2}})$, such that $f(x)=f(u)=\\ln u$. Then, according to the chain rule:
\n\\[\\frac{df}{dx}=\\frac{df}{du}\\cdot \\frac{du}{dx} \\]
\nEvaluating the derivatives on the right-hand side: $\\displaystyle{\\frac{du}{dx}=\\simplify[std]{{a2}*sinh({a2}x+{b2})}}$ and $\\displaystyle{\\frac{df}{du}=\\frac{1}{u}=\\frac{1}{\\cosh(\\simplify[std]{{a2}x+{b2}})}}$.
\nThen, inserting these into the chain rule gives:
\n\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\frac{\\simplify[std]{{a2} * sinh({a2} * x + {b2})}}{\\cosh(\\simplify[std]{{a2}x+{b2}})} \\\\ &=& \\simplify[std]{{a2} * tanh({a2} * x + {b2})}\\end{eqnarray*}\\]
\n"}, {"name": "Differentiate products of trig, log and exponential terms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b2"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..7)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "b1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "name": "a1"}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a2"}}, "ungrouped_variables": ["a", "b", "n", "a1", "a2", "b1", "b2"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "
$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$
\n$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]
", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "{a}*sech({a}x+{b})^2", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$
\n$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]
", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "{a2} * tanh({a2} * x + {b2})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$
\n$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]
", "showCorrectAnswer": true, "marks": 0}], "statement": "\n \n \nWrite down the derivatives of the following functions $f(x)$ .
\n \n \n \nNote that in order to input the square of a function such as $\\sinh(x)$ you have to input it as $(\\sinh(x))^2$, similarly for the other hyperbolic functions.
\n \n ", "tags": ["Calculus", "chain rule", "checked2015", "cosh", "derivatives of hyperbolic functions", "differential", "differential ", "differentiate", "differentiating hyperbolic functions", "differentiation", "hyperbolic functions", "MAS1601", "product rule", "sinh", "tanh"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "29/06/2012:
\nAdded and edited tags.
\n19/07/2012:
\nAdded description.
\nThere is also the problem of inputting functions of the form $xf(x)$ if $n=1$ or $2$ in the first question. So have reset $n$ to between $3$ and $7$. Otherwise would have to have an instruction here (perhaps depending on value of $n$).
\nChecked calculation.
\n23/07/2012:
\nAdded tags.
\n \nQuestion appears to be working correctly.
\n", "licence": "Creative Commons Attribution 4.0 International", "description": "
Differentiate the following functions: $\\displaystyle x ^ n \\sinh(ax + b),\\;\\tanh(cx+d),\\;\\ln(\\cosh(px+q))$
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n \n \nHere is a table of the derivatives of some of the hyperbolic functions:
\n \n \n \n$f(x)$ | $\\displaystyle{\\frac{df}{dx}}$ |
---|---|
$\\sinh(bx)$ | $b\\cosh(bx)$ |
$\\cosh(bx)$ | $b\\sinh(bx)$ |
$\\tanh(bx)$ | $\\simplify{b*sech(bx)^2}$ |
a)
\n \n \n \n$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$
\n \n \n \nUse the product rule to obtain:
\\[\\frac{df}{dx} = \\simplify[std]{{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})}\\]
b)
\n \n \n \n$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$
\n \n \n \nUsing the table above we get:
\\[\\frac{df}{dx} = \\simplify[std]{{a}*sech({a}x+{b})^2}\\]
c)
\n \n \n \n$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$
\n \n \n \nUsing the chain rule we find:
\n \n \n \n\\[\\frac{df}{dx} = \\simplify[std]{{a2} * tanh({a2} * x + {b2})}\\]
\n \n "}, {"name": "Differentiation: Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "name": "n"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n$\\displaystyle \\simplify[std]{f(x) = x ^ {m} * ({a} * x+{b})^{n}}$
\n$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\nClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n ", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["algebraic manipulation", "calculus", "Calculus", "checked2015", "derivatives", "derivatives ", "differentiate a product", "differentiate polynomials", "differentiation", "elementary differentiation", "mas1601", "MAS1601", "polynomials", "product rule", "steps", "Steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t31/07/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tSteps problem to be addressed via an issue. Now resolved.
\n \t\tChecked calculation.OK.
\n \t\tImproved prompt display.
\n \t\tClicking on Show steps does not lose any marks.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $f(x) = x^m(a x+b)^n$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n \n \nThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n \n \n \n\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]
\n \n \n \n\\[\\simplify[std]{v = ({a} * x+{b})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n*a} * ({a} * x+{b})^{n-1}}\\]
\n \n \n \nHence on substituting into the product rule above we get:
\n \n \n \n\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}}\\]
\n \n \n "}, {"name": "Differentiation: Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m}x ^ {m-1} * cos({a} * x+{b})-{a}x^{m} * sin({a} * x+{b})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t$\\simplify[std]{f(x) = x ^ {m} * cos({a} * x+{b})}$
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\tClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["calculus", "Calculus", "checked2015", "derivative of a product", "differentiating a product", "differentiating trigonometric functions", "differentiation", "MAS1601", "mas1601", "product rule", "Steps", "steps", "trigonometric functions"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t31/07/2012:
\n\t\tAdded tags.
\n\t\tAdded description.
\n\t\tSteps problem to be addressed. Now resolved.
\n\t\tChecked calculation.OK.
\n\t\tImproved prompt display.
\n\t\tClicking on Show steps does not lose any marks.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $x^m\\cos(ax+b)$
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = cos({a} * x+{b})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = -{a} * sin({a} * x+{b})}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * cos({a} * x+{b})-{a}x^{m} * sin({a} * x+{b})}\\]
\n\t \n\t \n\t"}, {"name": "Differentiation: Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(2..5)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "name": "b"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "b", "s2", "s1", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{b} * cos({a} + {b} * x) * e ^ ({n} * x) + {n} * sin({a} + {b} * x) * e ^ ({n} * x)", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t$\\simplify[std]{f(x) = sin({b}x + {a}) * e ^ ({n} * x)}$
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\tClick on Show steps for more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["calculus", "Calculus", "checked2015", "derivative of a product", "differentiating a product", "differentiating exponential functions", "differentiating trigonometric functions", "differentiation", "mas1601", "MAS1601", "product rule", "Steps", "steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t31/07/2012:
\n\t\tChecked calculation.
\n\t\tAdded tags.
\n\t\tAllowed no penalty on looking at Show steps.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $ \\sin(ax+b) e ^ {nx}$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = sin({a} + {b} * x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {b} * cos({a} + {b} * x)}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = e ^ ({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{b} * cos({a} + {b} * x) * e ^ ({n} * x) + {n} * sin({a} + {b} * x) * e ^ ({n} * x)}\\\\\n\t \n\t &=&\\simplify[std]{({b}cos({a}+{b}x)+{n}sin({a}+{b}x))e^({n}x)}\n\t \n\t \\end{eqnarray*}\\]
\n\t \n\t \n\t"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "warn", "message": "You only have five minutes left.
"}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "This is a formative assessment so the mark does not count towards your module.
", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [{"message": "You are able to use the differentiation product rule.
", "threshold": "40"}, {"message": "If you have not scored 40% on this you need to go over section 6D1 again.
", "threshold": 0}], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Kuldeep Singh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/109/"}], "extensions": [], "custom_part_types": [], "resources": []}