// Numbas version: finer_feedback_settings {"name": "Differentiation by the product rule- section 6D", "metadata": {"description": "", "licence": "None specified"}, "duration": 5400, "percentPass": "0", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], []], "questions": [{"name": "Differentation: Product Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..5)", "description": "", "name": "b"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "name": "n"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "({((m * b) + (n * a))} + ({(n * b)} * x))", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "dPoly", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t

$\\simplify[dPoly]{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$

\n\t\t\t

You are given that \\[\\simplify[dPoly]{Diff(f,x,1) = ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) * g(x)}\\]

\n\t\t\t

for a polynomial $g(x)$. You have to find $g(x)$.

\n\t\t\t

$g(x)=\\;$[[0]]

\n\t\t\t

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "tags": ["algebraic manipulation", "checked2015", "derivative", "derivative ", "deriving a function", "differentiate", "differentiating a function", "differentiating a product of functions", "differentiation", "exponential function", "functions", "mas1601", "MAS1601", "product rule", "Steps", "steps"], "rulesets": {"std": ["all", "!collectNumbers"], "dpoly": ["std", "fractionNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

20/06/2012:

\n\t\t

Added tags.

\n\t\t

4/7/2012:

\n\t\t

Added tags.

\n\t\t

31/07/2012:

\n\t\t

Checked calculation.

\n\t\t

Allowed no penalty on looking at Steps.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate the function $f(x)=(a + b x)^m  e ^ {n x}$ using the product rule. Find $g(x)$ such that $f\\;'(x)= (a + b x)^{m-1}  e ^ {n x}g(x)$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\t

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n\t \n\t \n\t \n\t

For this example:

\n\t \n\t \n\t \n\t

\\[\\simplify[dPoly]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[dPoly]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]

\n\t \n\t \n\t \n\t

\\[\\simplify{v = e ^ ({n} * x)} \\Rightarrow \\simplify{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]

\n\t \n\t \n\t \n\t

Hence on substituting into the product rule above we get:

\n\t \n\t \n\t \n\t

\\[\\simplify[dPoly]{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x) = ({a} + {b} * x) ^ {m -1} * ({m * b + n * a} + {n * b} * x) * e ^ ({n} * x)}\\]

\n\t \n\t \n\t \n\t

The last step was to take out the common term $\\simplify[dPoly]{({a} + {b} * x) ^ {m -1} * e ^ ({n} * x)}$.

\n\t \n\t \n\t \n\t

Hence \\[\\simplify[dPoly]{g(x) = {m * b + n * a} + {n * b} * x}\\].

\n\t \n\t \n\t \n\t"}, {"name": "Differentiate product of binomial and exponential", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(2..5)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "name": "b"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "b", "s2", "s1", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x)", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t

$\\simplify[std]{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$

\n\t\t\t

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n\t\t\t

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "tags": ["algebraic manipulation", "Calculus", "checked2015", "derivative of a product", "differentiating a product of functions", "differentiating the exponential function", "differentiation", "exponential function", "MAS1601", "product rule", "Steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

31/07/2012:

\n\t\t

Added tags.

\n\t\t

Improved display of prompt.

\n\t\t

Checked calculation.

\n\t\t

Allowed no penalty on looking at Steps.

\n\t\t

Issue with Show steps to be resolved. Has been resolved.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate the function $(a + b x)^m  e ^ {n x}$ using the product rule.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\t

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n\t \n\t \n\t \n\t

For this example:

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{v = e ^ ({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]

\n\t \n\t \n\t \n\t

Hence on substituting into the product rule above we get:

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x) }\\]

\n\t \n\t \n\t"}, {"name": "Differentiate product of binomial, trig, and exponential", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(2..5)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "name": "b"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "b", "s2", "s1", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{b}x * cos({b} * x+{a}) + ({n}x+{m}) * sin({b} * x+{a})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n

$\\simplify[std]{f(x) = x^{m}sin({b}x + {a}) * e ^ ({n} * x)}$

\n

The answer is of the form:

\n

$\\displaystyle \\frac{df}{dx}= \\simplify[std]{x^{m-1}e^({n}x)g(x)}$ for a function $g(x)$. You have to find $g(x)$

\n

$g(x)=\\;$[[0]]

\n

if you input a function of the form $xf(x)$ where $f(x)$ is a function, then you must input it as $x*f(x)$ with * for multiplication e.g. input $x*\\sin(ax+b)$ and not $xsin(ax+b)$.

\n

Click on Show steps for more information, you will not lose any marks by doing so.

\n ", "steps": [{"type": "information", "prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "tags": ["checked2015", "MAS1601"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Checked calculation.

\n \t\t

Added tags.

\n \t\t

Allowed no penalty on looking at Show steps.

\n \t\t

Corrected occurences of the form xsin and xcos to x*sin, x*cos.

\n \t\t

Included message warning about the input of functions of the form xsin etc.

\n \t\t

Show steps needs to be resolved. Now resolved.

\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate $f(x)=x^{m}\\sin(ax+b) e^{nx}$.

\n

The answer is of the form:
$\\displaystyle \\frac{df}{dx}= x^{m-1}e^{nx}g(x)$ for a function $g(x)$.

\n

Find $g(x)$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n

For this example:
\\[\\simplify[std]{u = x^{m}} \\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x^{m-1}}\\]

\n

\\[\\simplify[std]{v = sin({b} * x+{a})e^({n}x)}\\Rightarrow \\simplify[std]{Diff(v,x,1) = {b} * cos({b} * x+{a})e^({n}x)+{n}sin({b}x+{a})e^({n}x)}\\]

\n

Hence on substituting into the product rule above we get:

\n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{m}x^{m-1}sin({b} * x+{a})e^({n}x)+x^{m}({b} * cos({b} * x+{a}) * e ^ ({n} * x) + {n} * sin({b} * x+{a}) * e ^ ({n} * x))}\\\\ &=&\\simplify[std]{x^{m-1}e^({n}x)({b}x*cos({b}x+{a})+{n}x*sin({b}x+{a})+{m}sin({b}x+{a}))}\\\\ &=&\\simplify[std]{x^{m-1}e^({n}x)({b}x*cos({b}x+{a})+({n}x+{m})*sin({b}x+{a}))} \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{b}x*cos({b}x+{a})+({n}x+{m})*sin({b}x+{a})}$

\n "}, {"name": "Differentiate product of trig function and binomial", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..5)", "description": "", "name": "b"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "name": "n"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m*b}({a} + {b} * x) ^ {m-1} * sin({n} * x)+{n}*({a} + {b} * x) ^ {m} * cos({n} * x)", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t

$\\simplify[std]{f(x) = ({a} + {b} * x) ^ {m} * sin({n} * x)}$

\n\t\t\t

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n\t\t\t

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "tags": ["Calculus", "checked2015", "differentiating a product", "differentiating trigonometric functions", "differentiation", "MAS1601", "product rule", "Steps", "trigonometric functions"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

31/07/2012:

\n\t\t

Added tags.

\n\t\t

Added description.

\n\t\t

Steps problem to be addressed. Now resolved.

\n\t\t

Checked calculation.OK.

\n\t\t

Improved prompt display.

\n\t\t

Clicking on Show steps not lose any marks.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate $ (a+bx) ^ {m} \\sin(nx)$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\t

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n\t \n\t \n\t \n\t

For this example:

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{v = sin({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * cos({n} * x)}\\]

\n\t \n\t \n\t \n\t

Hence on substituting into the product rule above we get:

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{Diff(f,x,1) = {m*b}({a} + {b} * x) ^ {m-1} * sin({n} * x)+{n}*({a} + {b} * x) ^ {m} * cos({n} * x)}\\]

\n\t \n\t \n\t"}, {"name": "Differentiate products of hyperbolic functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b2"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..7)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "b1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "name": "a1"}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a2"}}, "ungrouped_variables": ["a", "a1", "a2", "b", "b1", "b2", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"prompt": "\n

$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n ", "scripts": {}, "gaps": [{"answer": "{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "\n

$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n ", "scripts": {}, "gaps": [{"answer": "{a}*sech({a}x+{b})^2", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "\n

$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n ", "scripts": {}, "gaps": [{"answer": "{a2} * tanh({a2} * x + {b2})", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 5, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}], "statement": "\n \n \n

Write down the derivatives of the following functions $f(x)$ .

\n \n \n \n

Note that in order to input the square of a function such as $\\sinh(x)$ you have to input it as $(\\sinh(x))^2$, similarly for the other hyperbolic functions.

\n \n \n ", "tags": ["calculus", "Calculus", "chain rule", "checked2015", "cosh", "derivatives of hyperbolic functions", "differential", "differential ", "differentiate", "differentiating hyperbolic functions", "differentiation", "hyperbolic functions", "MAS1601", "mas1601", "product rule", "query", "sinh", "tanh", "tested1"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

29/06/2012:

\n

Added and edited tags.

\n

19/07/2012:

\n

Added description.

\n

There is also the problem of inputting functions of the form $xf(x)$ if $n=1$ or $2$ in the first question. So have reset $n$ to between $3$ and $7$. Otherwise would have to have an instruction here (perhaps depending on value of $n$).

\n

Checked calculation.

\n

23/07/2012:

\n

Added tags.

\n

Question appears to be working correctly.

\n

22/12/2012:(WHF)

\n

Checked calculations, OK. Added tested1 tag.

\n

If users factorise the answer to the first question they may be inputting something of the form xf(x). So may be wise to write an instruction to use x*f(x). Raised as a query via the query tag.

\n

 

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate the following functions: $\\displaystyle x ^ n \\sinh(ax + b),\\;\\tanh(cx+d),\\;\\ln(\\cosh(px+q))$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

Here is a table of the derivatives of some of the hyperbolic functions:

\n\n\n\n\n\n\n\n
$f(x)$$\\displaystyle{\\frac{df}{dx}}$
$\\sinh(bx)$$b\\cosh(bx)$
$\\cosh(bx)$$b\\sinh(bx)$
$\\tanh(bx)$$\\simplify{b*sech(bx)^2}$
\n

a)          $\\displaystyle{f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}}$

\n

Using the product rule we obtain:

\n

\\[\\frac{df}{dx} = \\simplify[std]{{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * cosh({a1} * x + {b1})}\\]

\n

b)          $\\displaystyle{f(x)=\\tanh(\\simplify[std]{{a}x+{b}})}$

\n

Using the table we can immediately write the derivative as:

\n

\\[\\frac{df}{dx} = \\simplify[std]{{a}*sech({a}x+{b})^2}\\]

\n

c)          $\\displaystyle{f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}})}$

\n

Here we employ the chain rule.  We set $u=\\cosh(\\simplify[std]{{a2}x+{b2}})$, such that $f(x)=f(u)=\\ln u$.  Then, according to the chain rule:

\n

\\[\\frac{df}{dx}=\\frac{df}{du}\\cdot \\frac{du}{dx} \\]

\n

Evaluating the derivatives on the right-hand side: $\\displaystyle{\\frac{du}{dx}=\\simplify[std]{{a2}*sinh({a2}x+{b2})}}$ and $\\displaystyle{\\frac{df}{du}=\\frac{1}{u}=\\frac{1}{\\cosh(\\simplify[std]{{a2}x+{b2}})}}$.  

\n

Then, inserting these into the chain rule gives:

\n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\frac{\\simplify[std]{{a2} * sinh({a2} * x + {b2})}}{\\cosh(\\simplify[std]{{a2}x+{b2}})} \\\\ &=& \\simplify[std]{{a2} * tanh({a2} * x + {b2})}\\end{eqnarray*}\\]

\n

 

"}, {"name": "Differentiate products of trig, log and exponential terms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b2"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..7)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "b1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "name": "a1"}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a2"}}, "ungrouped_variables": ["a", "b", "n", "a1", "a2", "b1", "b2"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "{a}*sech({a}x+{b})^2", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "{a2} * tanh({a2} * x + {b2})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

", "showCorrectAnswer": true, "marks": 0}], "statement": "\n \n \n

Write down the derivatives of the following functions $f(x)$ .

\n \n \n \n

Note that in order to input the square of a function such as $\\sinh(x)$ you have to input it as $(\\sinh(x))^2$, similarly for the other hyperbolic functions.

\n \n ", "tags": ["Calculus", "chain rule", "checked2015", "cosh", "derivatives of hyperbolic functions", "differential", "differential ", "differentiate", "differentiating hyperbolic functions", "differentiation", "hyperbolic functions", "MAS1601", "product rule", "sinh", "tanh"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

29/06/2012:

\n

Added and edited tags.

\n

19/07/2012:

\n

Added description.

\n

There is also the problem of inputting functions of the form $xf(x)$ if $n=1$ or $2$ in the first question. So have reset $n$ to between $3$ and $7$. Otherwise would have to have an instruction here (perhaps depending on value of $n$).

\n

Checked calculation.

\n

23/07/2012:

\n

Added tags.

\n

\n

Question appears to be working correctly.

\n

 

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate the following functions: $\\displaystyle x ^ n \\sinh(ax + b),\\;\\tanh(cx+d),\\;\\ln(\\cosh(px+q))$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n \n \n

Here is a table of the derivatives of some of the hyperbolic functions:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n
$f(x)$$\\displaystyle{\\frac{df}{dx}}$
$\\sinh(bx)$$b\\cosh(bx)$
$\\cosh(bx)$$b\\sinh(bx)$
$\\tanh(bx)$$\\simplify{b*sech(bx)^2}$
\n \n \n \n

a)

\n \n \n \n

$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n \n \n \n

Use the product rule to obtain:
\\[\\frac{df}{dx} = \\simplify[std]{{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})}\\]

\n \n \n \n

b)

\n \n \n \n

$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$

\n \n \n \n

Using the table above we get:
\\[\\frac{df}{dx} = \\simplify[std]{{a}*sech({a}x+{b})^2}\\]

\n \n \n \n

c)

\n \n \n \n

$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n \n \n \n

Using the chain rule we find:

\n \n \n \n

\\[\\frac{df}{dx} = \\simplify[std]{{a2} * tanh({a2} * x + {b2})}\\]

\n \n "}, {"name": "Differentiation: Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "name": "n"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n

$\\displaystyle \\simplify[std]{f(x) = x ^ {m} * ({a} * x+{b})^{n}}$

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n ", "steps": [{"type": "information", "prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "tags": ["algebraic manipulation", "calculus", "Calculus", "checked2015", "derivatives", "derivatives ", "differentiate a product", "differentiate polynomials", "differentiation", "elementary differentiation", "mas1601", "MAS1601", "polynomials", "product rule", "steps", "Steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Steps problem to be addressed via an issue. Now resolved.

\n \t\t

Checked calculation.OK.

\n \t\t

Improved prompt display.

\n \t\t

Clicking on Show steps does not lose any marks.

\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate $f(x) = x^m(a x+b)^n$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({a} * x+{b})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n*a} * ({a} * x+{b})^{n-1}}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}}\\]

\n \n \n "}, {"name": "Differentiation: Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m}x ^ {m-1} * cos({a} * x+{b})-{a}x^{m} * sin({a} * x+{b})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t

$\\simplify[std]{f(x) = x ^ {m} * cos({a} * x+{b})}$

\n\t\t\t

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n\t\t\t

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "tags": ["calculus", "Calculus", "checked2015", "derivative of a product", "differentiating a product", "differentiating trigonometric functions", "differentiation", "MAS1601", "mas1601", "product rule", "Steps", "steps", "trigonometric functions"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

31/07/2012:

\n\t\t

Added tags.

\n\t\t

Added description.

\n\t\t

Steps problem to be addressed. Now resolved.

\n\t\t

Checked calculation.OK.

\n\t\t

Improved prompt display.

\n\t\t

Clicking on Show steps does not lose any marks.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate $x^m\\cos(ax+b)$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\t

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n\t \n\t \n\t \n\t

For this example:

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{v = cos({a} * x+{b})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = -{a} * sin({a} * x+{b})}\\]

\n\t \n\t \n\t \n\t

Hence on substituting into the product rule above we get:

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * cos({a} * x+{b})-{a}x^{m} * sin({a} * x+{b})}\\]

\n\t \n\t \n\t"}, {"name": "Differentiation: Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(2..5)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "name": "b"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "b", "s2", "s1", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{b} * cos({a} + {b} * x) * e ^ ({n} * x) + {n} * sin({a} + {b} * x) * e ^ ({n} * x)", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t

$\\simplify[std]{f(x) = sin({b}x + {a}) * e ^ ({n} * x)}$

\n\t\t\t

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n\t\t\t

Click on Show steps for more information, you will not lose any marks by doing  so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "tags": ["calculus", "Calculus", "checked2015", "derivative of a product", "differentiating a product", "differentiating exponential functions", "differentiating trigonometric functions", "differentiation", "mas1601", "MAS1601", "product rule", "Steps", "steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

31/07/2012:

\n\t\t

Checked calculation.

\n\t\t

Added tags.

\n\t\t

Allowed no penalty on looking at Show steps.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate $ \\sin(ax+b) e ^ {nx}$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\t

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n\t \n\t \n\t \n\t

For this example:

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{u = sin({a} + {b} * x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {b} * cos({a} + {b} * x)}\\]

\n\t \n\t \n\t \n\t

\\[\\simplify[std]{v = e ^ ({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]

\n\t \n\t \n\t \n\t

Hence on substituting into the product rule above we get:

\n\t \n\t \n\t \n\t

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{b} * cos({a} + {b} * x) * e ^ ({n} * x) + {n} * sin({a} + {b} * x) * e ^ ({n} * x)}\\\\\n\t \n\t &=&\\simplify[std]{({b}cos({a}+{b}x)+{n}sin({a}+{b}x))e^({n}x)}\n\t \n\t \\end{eqnarray*}\\]

\n\t \n\t \n\t"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "warn", "message": "

You only have five minutes left.

"}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "

This is a formative assessment so the mark does not count towards your module.

", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [{"message": "

You are able to use the differentiation product rule.

", "threshold": "40"}, {"message": "

If you have not scored 40% on this you need to go over section 6D1 again.

", "threshold": 0}], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Kuldeep Singh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/109/"}], "extensions": [], "custom_part_types": [], "resources": []}