// Numbas version: finer_feedback_settings {"name": "Quadratic Equations: Factorise, Simple Case (Instructional)", "metadata": {"description": "
Structured questions with instructions.
\nUse for coaching not assessment.
", "licence": "Creative Commons Attribution 4.0 International"}, "duration": 0, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", ""], "variable_overrides": [[], [], [], []], "questions": [{"name": "Quadratic Equations: Factor (Simple Case) 01", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}], "tags": [], "metadata": {"description": "Questions asking for the factoring of simple case (a=1)
\n", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Where \\( a, b \\) and \\( c \\) are numerical co-efficients. \"\\( a \\)\" cannot be \\( 0 \\) but \"\\( b \\)\" and \"\\( c \\)\" can be any value (including \\( 0 \\)). The equation MUST be in this form before applying ANY method for solving.
\nSome quadratic equations will factorise giving a simple way to \"solve\" them and find their roots. In the \"simple case\" (when \\( a=1 \\)) this can be acheived by finding factors whose product (\\( \\times \\)) is \\( c \\) and sum (\\( + \\)) is \\( b \\).
", "advice": "We are asked to factor different quadratic equations.
\nThe first step is to check that the equations are in \"standard form\", in these questions, they are. Also, these equations are all \"simple case\" quadratics (the co-efficient of \\( x^2 \\) is one), i.e. \\( a=1 \\).
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) \\)
\nThen, as stated earlier, you just need to find a pair of numbers that:
\na) \\( \\simplify{ x^2 + {b1}x + {c1} =0 } \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{f1} \\) and \\( \\var{f2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {f1})( x + {f2} ) }=0 \\)
\n\n
\n
b) \\( \\simplify{ x^2 + {b2}x + {c2} =0 } \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{g1} \\) and \\( \\var{g2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {g1})( x + {g2} ) =0 } \\)
\n\n
\n
c) \\( \\simplify{ x^2 + {b3}x + {c3} =0 } \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{h1} \\) and \\( \\var{h2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {h1})( x + {h2} ) =0 } \\)
\n\n
\n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"f2": {"name": "f2", "group": "Question A", "definition": "random(-9..9 except 0 except f1)", "description": "", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Question A", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Question A", "definition": "{f1}+{f2}", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Question A", "definition": "{f1}*{f2}", "description": "", "templateType": "anything", "can_override": false}, "g1": {"name": "g1", "group": "Question B", "definition": "random(-9..9 except 0 except f1 except f2)", "description": "", "templateType": "anything", "can_override": false}, "g2": {"name": "g2", "group": "Question B", "definition": "random(-9..9 except 0 except f1 except f2 except g1)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Question B", "definition": "{g1}+{g2}", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Question B", "definition": "{g1}*{g2}", "description": "", "templateType": "anything", "can_override": false}, "h1": {"name": "h1", "group": "Question C", "definition": "random(-9..9 except 0 except f1 except f2 except g1 except g2)", "description": "", "templateType": "anything", "can_override": false}, "h2": {"name": "h2", "group": "Question C", "definition": "random(-9..9 except 0 except f1 except f2 except g1 except g2 except h1)", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Question C", "definition": "{h1}+{h2}", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Question C", "definition": "{h1}*{h2}", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Question A", "variables": ["f1", "f2", "b1", "c1"]}, {"name": "Question B", "variables": ["g1", "g2", "b2", "c2"]}, {"name": "Question C", "variables": ["h1", "h2", "b3", "c3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
Factorise the following equations:
"}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b1}x + {c1} =0 } \\)
\n[[0]] \\( =0 \\)
\n", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {f1} ) (x + {f2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b2}x + {c2} =0 } \\)
\n[[0]] \\( =0 \\)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {g1} ) (x + {g2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b3}x + {c3} =0 } \\)
\n[[0]] \\( =0 \\)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {h1} ) (x + {h2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Quadratic Equations: Factor (Simple Case) 02", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}], "tags": [], "metadata": {"description": "Questions asking for the factoring of simple case (a=1)
\nThese first need to be changed to standard form.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Where \\( a, b \\) and \\( c \\) are numerical co-efficients. \"\\( a \\)\" cannot be \\( 0 \\) but \"\\( b \\)\" and \"\\( c \\)\" can be any value (including \\( 0 \\)). The equation MUST be in this form before applying ANY method for solving.
\nSome quadratic equations will factorise giving a simple way to \"solve\" them and find their roots. In the \"simple case\" (when \\( a=1 \\)) this can be acheived by finding factors whose product (\\( \\times \\)) is \\( c \\) and sum (\\( + \\)) is \\( b \\).
", "advice": "We are asked to factor different quadratic equations.
\nThe first step is to check that the equations are in \"standard form\", in these questions they are not so they will need to be re-written in standard form. Just use ordinary algebra to rearrange all terms to the left hand side \\( = 0 \\).
\nThese equations are all \"simple case\" quadratics (the co-efficient of \\( x^2 \\) is one), i.e. \\( a=1 \\).
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) \\)
\nThen, as stated earlier, you just need to find a pair of numbers that:
\na) \\( \\simplify{ x^2 + {b1}x =-{c1} } \\)
\nThis is not \"standard\". Re-arrange all terms to the left hand side, leaving \\( 0 \\) on the right.
\n\\( \\simplify{x^2 + {b1}x+{c1} }=0 \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{f1} \\) and \\( \\var{f2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {f1})( x + {f2} ) }=0 \\)
\n\n
\n
b) \\( \\simplify{ x^2 + {b2}x =-{c2} } \\)
\nThis is not \"standard\". Re-arrange all terms to the left hand side, leaving \\( 0 \\) on the right.
\n\\( \\simplify{x^2 + {b2}x+{c2} }=0 \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{g1} \\) and \\( \\var{g2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {g1})( x + {g2} ) =0 } \\)
\n\n
\n
c) \\( \\simplify{ x^2 = -{c3} -{b3}x } \\)
\nThis is not \"standard\". Re-arrange all terms to the left hand side, leaving \\( 0 \\) on the right.
\n\\( \\simplify{x^2 + {b3}x+{c3} }=0 \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{h1} \\) and \\( \\var{h2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {h1})( x + {h2} ) =0 } \\)
\n\n
\n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"f2": {"name": "f2", "group": "Question A", "definition": "random(-9..9 except 0 except f1)", "description": "", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Question A", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Question A", "definition": "{f1}+{f2}", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Question A", "definition": "{f1}*{f2}", "description": "", "templateType": "anything", "can_override": false}, "g1": {"name": "g1", "group": "Question B", "definition": "random(-9..9 except 0 except f1 except f2)", "description": "", "templateType": "anything", "can_override": false}, "g2": {"name": "g2", "group": "Question B", "definition": "random(-9..9 except 0 except f1 except f2 except g1)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Question B", "definition": "{g1}+{g2}", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Question B", "definition": "{g1}*{g2}", "description": "", "templateType": "anything", "can_override": false}, "h1": {"name": "h1", "group": "Question C", "definition": "random(-9..9 except 0 except f1 except f2 except g1 except g2)", "description": "", "templateType": "anything", "can_override": false}, "h2": {"name": "h2", "group": "Question C", "definition": "random(-9..9 except 0 except f1 except f2 except g1 except g2 except h1)", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Question C", "definition": "{h1}+{h2}", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Question C", "definition": "{h1}*{h2}", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Question A", "variables": ["f1", "f2", "b1", "c1"]}, {"name": "Question B", "variables": ["g1", "g2", "b2", "c2"]}, {"name": "Question C", "variables": ["h1", "h2", "b3", "c3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
Factorise the following equations:
"}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b1}x =-{c1} } \\)
\nInput the equation in standard form:
\n[[0]] \\( =0 \\)
\nNow, factor the equation:
\n[[1]] \\( =0 \\)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2 + {b1}x+{c1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {f1} ) (x + {f2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b2}x =-{c2} } \\)
\nInput the equation in standard form:
\n[[0]] \\( =0 \\)
\nNow, factor the equation:
\n[[1]] \\( =0 \\)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2 + {b2}x +{c2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {g1} ) (x + {g2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 = -{c3} -{b3}x } \\)
\nInput the equation in standard form:
\n[[0]] \\( =0 \\)
\nNow, factor the equation:
\n[[1]] \\( =0 \\)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2 + {b3}x+{c3}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {h1} ) (x + {h2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Quadratic Equations: Factor and Solve (Simple Case) 01", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}], "tags": [], "metadata": {"description": "Questions asking for the factoring of simple case (a=1)
\nThen using factors to find roots.
\n", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Where \\( a, b \\) and \\( c \\) are numerical co-efficients. \"\\( a \\)\" cannot be \\( 0 \\) but \"\\( b \\)\" and \"\\( c \\)\" can be any value (including \\( 0 \\)). The equation MUST be in this form before applying ANY method for solving.
\nSome quadratic equations will factorise giving a simple way to \"solve\" them and find their roots. In the \"simple case\" (when \\( a=1 \\)) this can be acheived by finding factors whose product (\\( \\times \\)) is \\( c \\) and sum (\\( + \\)) is \\( b \\).
", "advice": "We are asked to factor different quadratic equations.
\nThe first step is to check that the equations are in \"standard form\", in these questions, they are. Also, these equations are all \"simple case\" quadratics (the co-efficient of \\( x^2 \\) is one), i.e. \\( a=1 \\).
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) \\)
\nThen, as stated earlier, you just need to find a pair of numbers that:
\nOnce the equation is factored, we have \\( ( x + ??)( x + ?? ) =0 \\)
\nThe only way that this is possible is if one (or both) of the brackets equals zero.
\na) \\( \\simplify{ x^2 + {b1}x + {c1} =0 } \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{f1} \\) and \\( \\var{f2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {f1})( x + {f2} ) }=0 \\)
\nNow
\nIf \\( \\simplify{ ( x + {f1}) }=0 \\)
\nThen \\( \\simplify{ x =-{f1} } \\)
\nIf \\( \\simplify{ ( x + {f2}) }=0 \\)
\nThen \\( \\simplify{ x =-{f2} } \\)
\n\n
\n
b) \\( \\simplify{ x^2 + {b2}x + {c2} =0 } \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{g1} \\) and \\( \\var{g2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {g1})( x + {g2} ) =0 } \\)
\nNow
\nIf \\( \\simplify{ ( x + {g1}) }=0 \\)
\nThen \\( \\simplify{ x =-{g1} } \\)
\nIf \\( \\simplify{ ( x + {g2}) }=0 \\)
\nThen \\( \\simplify{ x =-{g2} } \\)
\n\n
\n
c) \\( \\simplify{ x^2 + {b3}x + {c3} =0 } \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{h1} \\) and \\( \\var{h2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {h1})( x + {h2} ) =0 } \\)
\nNow
\nIf \\( \\simplify{ ( x + {h1}) }=0 \\)
\nThen \\( \\simplify{ x =-{h1} } \\)
\nIf \\( \\simplify{ ( x + {h2}) }=0 \\)
\nThen \\( \\simplify{ x =-{h2} } \\)
\n\n
\n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"f2": {"name": "f2", "group": "Question A", "definition": "random(-9..9 except 0 except f1)", "description": "", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Question A", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Question A", "definition": "{f1}+{f2}", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Question A", "definition": "{f1}*{f2}", "description": "", "templateType": "anything", "can_override": false}, "g1": {"name": "g1", "group": "Question B", "definition": "random(-9..9 except 0 except f1 except f2)", "description": "", "templateType": "anything", "can_override": false}, "g2": {"name": "g2", "group": "Question B", "definition": "random(-9..9 except 0 except f1 except f2 except g1)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Question B", "definition": "{g1}+{g2}", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Question B", "definition": "{g1}*{g2}", "description": "", "templateType": "anything", "can_override": false}, "h1": {"name": "h1", "group": "Question C", "definition": "random(-9..9 except 0 except f1 except f2 except g1 except g2)", "description": "", "templateType": "anything", "can_override": false}, "h2": {"name": "h2", "group": "Question C", "definition": "random(-9..9 except 0 except f1 except f2 except g1 except g2 except h1)", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Question C", "definition": "{h1}+{h2}", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Question C", "definition": "{h1}*{h2}", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Question A", "variables": ["f1", "f2", "b1", "c1"]}, {"name": "Question B", "variables": ["g1", "g2", "b2", "c2"]}, {"name": "Question C", "variables": ["h1", "h2", "b3", "c3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
Factorise the following equations:
"}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b1}x + {c1} =0 } \\)
\n[[0]] \\( =0 \\)
\nNow use these factors to give the roots of the equation:
\n\\(x_1= \\) [[1]]
\n\\(x_2= \\) [[2]]
\n(If you are sure that your roots are correct but they are marked wrong, switch them around).
\n", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {f1} ) (x + {f2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{f1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{f2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b2}x + {c2} =0 } \\)
\n[[0]] \\( =0 \\)
\nNow use these factors to give the roots of the equation:
\n\\(x_1= \\) [[1]]
\n\\(x_2= \\) [[2]]
\n(If you are sure that your roots are correct but they are marked wrong, switch them around).
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {g1} ) (x + {g2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{g1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{g2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b3}x + {c3} =0 } \\)
\n[[0]] \\( =0 \\)
\nNow use these factors to give the roots of the equation:
\n\\(x_1= \\) [[1]]
\n\\(x_2= \\) [[2]]
\n(If you are sure that your roots are correct but they are marked wrong, switch them around).
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {h1} ) (x + {h2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{h1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{h2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Quadratic Equations: Factor and Solve (Simple Case) 02", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}], "tags": [], "metadata": {"description": "Questions asking for the factoring of simple case (a=1)
\nThese first need to be changed to standard form.
\nThen use factors to solve.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Where \\( a, b \\) and \\( c \\) are numerical co-efficients. \"\\( a \\)\" cannot be \\( 0 \\) but \"\\( b \\)\" and \"\\( c \\)\" can be any value (including \\( 0 \\)). The equation MUST be in this form before applying ANY method for solving.
\nSome quadratic equations will factorise giving a simple way to \"solve\" them and find their roots. In the \"simple case\" (when \\( a=1 \\)) this can be acheived by finding factors whose product (\\( \\times \\)) is \\( c \\) and sum (\\( + \\)) is \\( b \\).
", "advice": "We are asked to factor different quadratic equations.
\nThe first step is to check that the equations are in \"standard form\", in these questions they are not so they will need to be re-written in standard form. Just use ordinary algebra to rearrange all terms to the left hand side \\( = 0 \\).
\nThese equations are all \"simple case\" quadratics (the co-efficient of \\( x^2 \\) is one), i.e. \\( a=1 \\).
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) \\)
\nThen, as stated earlier, you just need to find a pair of numbers that:
\na) \\( \\simplify{ x^2 + {b1}x =-{c1} } \\)
\nThis is not \"standard\". Re-arrange all terms to the left hand side, leaving \\( 0 \\) on the right.
\n\\( \\simplify{x^2 + {b1}x+{c1} }=0 \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{f1} \\) and \\( \\var{f2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {f1})( x + {f2} ) }=0 \\)
\nNow
\nIf \\( \\simplify{ ( x + {f1}) }=0 \\)
\nThen \\( \\simplify{ x =-{f1} } \\)
\nIf \\( \\simplify{ ( x + {f2}) }=0 \\)
\nThen \\( \\simplify{ x =-{f2} } \\)
\n\n
\n
b) \\( \\simplify{ x^2 + {b2}x =-{c2} } \\)
\nThis is not \"standard\". Re-arrange all terms to the left hand side, leaving \\( 0 \\) on the right.
\n\\( \\simplify{x^2 + {b2}x+{c2} }=0 \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{g1} \\) and \\( \\var{g2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {g1})( x + {g2} ) =0 } \\)
\nNow
\nIf \\( \\simplify{ ( x + {g1}) }=0 \\)
\nThen \\( \\simplify{ x =-{g1} } \\)
\nIf \\( \\simplify{ ( x + {g2}) }=0 \\)
\nThen \\( \\simplify{ x =-{g2} } \\)
\n\n
\n
c) \\( \\simplify{ x^2 = -{c3} -{b3}x } \\)
\nThis is not \"standard\". Re-arrange all terms to the left hand side, leaving \\( 0 \\) on the right.
\n\\( \\simplify{x^2 + {b3}x+{c3} }=0 \\)
\nWe know that, to get the \\( x^2 \\) term we need a single \\( x \\) in each bracket:
\n\\( ( x + ??)( x + ?? ) =0 \\)
\nThen, we need to find two numbers that:
\nA little thought leads us to \\( \\var{h1} \\) and \\( \\var{h2} \\). these can be inserted into the brackets to give:
\n\\( \\simplify{ ( x + {h1})( x + {h2} ) =0 } \\)
\nNow
\nIf \\( \\simplify{ ( x + {h1}) }=0 \\)
\nThen \\( \\simplify{ x =-{h1} } \\)
\nIf \\( \\simplify{ ( x + {h2}) }=0 \\)
\nThen \\( \\simplify{ x =-{h2} } \\)
\n\n
\n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"f2": {"name": "f2", "group": "Question A", "definition": "random(-9..9 except 0 except f1)", "description": "", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Question A", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Question A", "definition": "{f1}+{f2}", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Question A", "definition": "{f1}*{f2}", "description": "", "templateType": "anything", "can_override": false}, "g1": {"name": "g1", "group": "Question B", "definition": "random(-9..9 except 0 except f1 except f2)", "description": "", "templateType": "anything", "can_override": false}, "g2": {"name": "g2", "group": "Question B", "definition": "random(-9..9 except 0 except f1 except f2 except g1)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Question B", "definition": "{g1}+{g2}", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Question B", "definition": "{g1}*{g2}", "description": "", "templateType": "anything", "can_override": false}, "h1": {"name": "h1", "group": "Question C", "definition": "random(-9..9 except 0 except f1 except f2 except g1 except g2)", "description": "", "templateType": "anything", "can_override": false}, "h2": {"name": "h2", "group": "Question C", "definition": "random(-9..9 except 0 except f1 except f2 except g1 except g2 except h1)", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Question C", "definition": "{h1}+{h2}", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Question C", "definition": "{h1}*{h2}", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Question A", "variables": ["f1", "f2", "b1", "c1"]}, {"name": "Question B", "variables": ["g1", "g2", "b2", "c2"]}, {"name": "Question C", "variables": ["h1", "h2", "b3", "c3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
Factorise the following equations:
"}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b1}x =-{c1} } \\)
\nInput the equation in standard form:
\n[[0]] \\( =0 \\)
\nNow, factor the equation:
\n[[1]] \\( =0 \\)
\nUse these factors to give the roots of the equation:
\n\\(x_1= \\) [[2]]
\n\\(x_2= \\) [[3]]
\n(If you are sure that your roots are correct but they are marked wrong, switch them around).
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2 + {b1}x+{c1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {f1} ) (x + {f2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{f1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{f2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b2}x =-{c2} } \\)
\nInput the equation in standard form:
\n[[0]] \\( =0 \\)
\nNow, factor the equation:
\n[[1]] \\( =0 \\)
\nUse these factors to give the roots of the equation:
\n\\(x_1= \\) [[2]]
\n\\(x_2= \\) [[3]]
\n(If you are sure that your roots are correct but they are marked wrong, switch them around).
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2 + {b2}x +{c2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {g1} ) (x + {g2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{g1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{g2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 = -{c3} -{b3}x } \\)
\nInput the equation in standard form:
\n[[0]] \\( =0 \\)
\nNow, factor the equation:
\n[[1]] \\( =0 \\)
\nUse these factors to give the roots of the equation:
\n\\(x_1= \\) [[2]]
\n\\(x_2= \\) [[3]]
\n(If you are sure that your roots are correct but they are marked wrong, switch them around).
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2 + {b3}x+{c3}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x + {h1} ) (x + {h2} )", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{h1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{h2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": false, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": false, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}], "extensions": [], "custom_part_types": [], "resources": []}