// Numbas version: exam_results_page_options {"questions": [], "duration": 0, "name": "Differentiation from first principles", "showQuestionGroupNames": false, "allQuestions": true, "percentPass": 0, "feedback": {"showanswerstate": true, "advicethreshold": 0, "showactualmark": true, "allowrevealanswer": true, "showtotalmark": true}, "shuffleQuestions": false, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Function approximation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "n"}, "est": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(a^(m/n)+h*m*a^(m/n-1)/n,5)", "description": "", "name": "est"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(a^(1/n),0)", "description": "", "name": "c"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(n=2,random(4,9,16,25,36),if(n=3,random(8,27,64),if(n=4,random(16,81),random(32,243))))", "description": "", "name": "a"}, "tr": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround((a+h)^(m/n),5)", "description": "", "name": "tr"}, "p": {"templateType": "anything", "group": "Ungrouped variables", "definition": "m-n", "description": "", "name": "p"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(n=2 or n=4,random(1,3,5), if(n=3,random(1,2,4,5),random(1,2,3,4,6)))", "description": "", "name": "m"}, "h": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(random(1,-1)*random(0.001..0.1#0.001),3)", "description": "", "name": "h"}}, "ungrouped_variables": ["a", "c", "est", "h", "s1", "tr", "m", "n", "p"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "x^({m}/{n})", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "showCorrectAnswer": true, "marks": 0.5, "vsetrangepoints": 5}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{a}", "minValue": "{a}", "correctAnswerFraction": false, "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{h}", "minValue": "{h}", "correctAnswerFraction": false, "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{est}", "minValue": "{est}", "correctAnswerFraction": false, "marks": 2, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{tr}", "minValue": "{tr}", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "\n

In this case $f(x) =\\;$ [[0]].

\n

$a= \\;$[[1]] and $h=\\; $[[2]]
Input your estimation to $5$ decimal places: [[3]]

\n

True value is: [[4]] (input to 5 decimal places).

\n ", "showCorrectAnswer": true, "marks": 0}], "statement": "

Use the approximation $f(a+h) \\approx f(a)+hf^{\\prime}(a)$ to estimate \\[\\var{a+h}^{\\frac{\\var{m}}{\\var{n}}} \\]for a suitable function $f(x)$.

", "tags": ["application of differentiation", "approximation", "approximation of the value of a function using the tangent", "approximations", "calculus", "Calculus", "checked2015", "equation of tangent", "first order approximation", "functions", "maclaurin series", "MacLaurin series", "mas1601", "MAS1601", "tangent equation"], "rulesets": {"std": ["all", "!collectNumbers"], "dpoly": ["std", "fractionNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t

3/07/2012

\n \t\t

Added tags

\n \t\t

20/06/2012:

\n \t\t


Added tags.

\n \t\t

Got rid of request for 5dps for the function!

\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Approximate $f(x)=(a+h)^{m/n}$ by $f(a)+hf^{\\prime}(a)$ to 5 decimal places and compare with true value.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

We have $f(x)=x^\\frac{\\var{m}}{\\var{n}}$ and $a= \\var{a}$, $h=\\var{h}$.
Note that $\\var{a}^\\frac{1}{\\var{n}}=\\var{c}$ and so using the approximation :
$f(a+h)\\approx f(a)+hf^{\\prime}(a)$ and $f^{\\prime}(x) = \\frac{\\var{m}}{\\var{n}}\\simplify[std]{x^({m-n}/{n})}$
we have:
\\[\\simplify[std]{{a+h}^({m}/{n})}\\approx \\simplify[simplifyFractions]{{a}^({m}/{n})+{h}*({m}/{n})*{a}^({p}/{n})}=\\simplify[std,!sqrtSquare]{{c}^{m}+ {h}*({m}/{n})*{c}^{m-n}}=\\var{est}\\]
to 5 decimal places.
The true value to 5 decimal places is {tr}.

"}, {"name": "Gradient and equation of chord on curve", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"val": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(d1,3)", "description": "", "name": "val"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2,3)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(a=-b1,-b1,b1)", "description": "", "name": "b"}, "h": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s*random(0.005..0.1#0.005)", "description": "", "name": "h"}, "s": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s"}, "tol": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0.001", "description": "", "name": "tol"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-4,-3,-2,-1,1,2,3,4)", "description": "", "name": "b1"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround((a+b)^n-d1*a,5)", "description": "", "name": "d"}, "d1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(((a+b+h)^n-(a+b)^n)/h,5)", "description": "", "name": "d1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a"}, "val1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(d,3)", "description": "", "name": "val1"}}, "ungrouped_variables": ["a", "b", "d", "val", "h", "n", "s", "b1", "tol", "val1", "d1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{val+tol}", "minValue": "{val-tol}", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{val+tol}", "minValue": "{val-tol}", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{val1+tol}", "minValue": "{val1-tol}", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "\n\t\t\t

The gradient $m =$ [[0]] (input your answer to 3 decimal places).

\n\t\t\t

The equation of the chord is $y=ax+b$ where:

\n\t\t\t

$a= \\;$[[1]] and $b=\\; $[[2]]

\n\t\t\t

Enter both values $a$ and $b$ correct to 3 decimal places.

\n\t\t\t \n\t\t\t", "steps": [{"type": "information", "prompt": "

Given two points $(a,f(a))$ and $(a+h,f(a+h))$ on the graph of the function $y=f(x)$.
Then the chord is the straight line between these two points and has the equation \\[y-f(a)=m(x-a)\\] where $m$ is the gradient of the chord.
The gradient is given by dividing the change in $y$ by the change in $x$.
Hence for this example \\[m = \\frac{f(a+h)-f(a)}{h} = \\frac{f(\\var{a+h})-f(\\var{a})}{\\var{h}}\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "\n\t

Let $f(x)=\\simplify[std]{(x+{b})^{n}}$. What are the gradient and equation of the chord between $(\\var{a},f(\\var{a}))$ and $(\\simplify[std]{{a}+{h}},f(\\simplify[std]{{a}+{h}}))$?

\n\t

You can get help by clicking on Show steps. If you do so you will lose 1 mark.

\n\t \n\t", "tags": ["Calculus", "MAS1601", "Newton quotient", "Steps", "checked2015", "chord", "equation of a chord", "equation of a straight line", "function", "functions", "gradient of chord", "straight line"], "rulesets": {"std": ["all", "!collectNumbers"], "dpoly": ["std", "fractionNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

20/06/2012:

\n\t\t

Added tags.

\n\t\t

Decided to include Steps as a tag. Perhaps the presence of Steps can be searched for in another way?

\n\t\t

03/07/2012:

\n\t\t

Added tags.

\n\t\t

31/07/2012:

\n\t\t

Steps issue resolved.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Given $f(x)=(x+b)^n$. Find the gradient and equation of the chord between $(a,f(a))$ and $(a+h,f(a+h))$ for randomised values of $a$, $b$ and $h$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

Given two points $(a,f(a))$ and $(a+h,f(a+h))$ on the graph of the function $y=f(x)$.
Then the chord is the straight line between these two points and has the equation \\[y-f(a)=m(x-a)\\] where $m$ is the gradient of the chord.
The gradient is given by dividing the change in $y$ by the change in $x$.
Hence for this example \\[m = \\frac{f(a+h)-f(a)}{h} = \\frac{f(\\var{a+h})-f(\\var{a})}{\\var{h}} = \\var{d1} = \\var{val}\\] to 3 decimal places.
Hence the equation of the chord is of the form $y=\\var{d1}x+b$ for some constant $b$.
But we know that when $x=\\var{a}$ then $y=f(\\var{a}) = \\var{a+b}^\\var{n}=\\var{(a+b)^n}$
So \\[b=\\var{(a+b)^n}-\\var{d1}\\times\\var{a} = \\var{d}=\\var{val1}\\] to 3 decimal places

"}, {"name": "True/false statements about continuity and differentiability, ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "parts": [{"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "\n \n \n

[[0]]

\n \n \n \n", "unitTests": [], "sortAnswers": false, "scripts": {}, "gaps": [{"displayType": "checkbox", "type": "m_n_x", "maxAnswers": 0, "shuffleChoices": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "minAnswers": 0, "minMarks": 0, "shuffleAnswers": false, "variableReplacements": [], "layout": {"expression": ""}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "matrix": [[1, -1], [1, -1], ["-1", "1"], [-1, 1]], "choices": ["

{Ch1}

", "

{Ch2}

", "

{Ch3}

", "

{Ch4}

"], "unitTests": [], "answers": ["True", "False"], "scripts": {}, "maxMarks": 0, "showCorrectAnswer": true, "marks": 0, "warningType": "none"}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "showFeedbackIcon": true}], "variables": {"v": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "name": "v", "description": ""}, "f1": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f: \\\\mathbb{R} \\\\to \\\\mathbb{R}$ is continuous at $c \\\\in \\\\mathbb{R}$, then it is differentiable at $c$.

\"", "name": "f1", "description": ""}, "ch2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(u=1,tr4,if(u=2,tr5,tr6))", "name": "ch2", "description": ""}, "u": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "name": "u", "description": ""}, "f2": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f: \\\\mathbb{R} \\\\to \\\\mathbb{R}$ is continuous on $(a,b)$ and $f(a) < \\\\gamma < f(b)$, then $f(c)=\\\\gamma$ for some $c \\\\in (a,b)$.

\"", "name": "f2", "description": ""}, "h": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "name": "h", "description": ""}, "tr1": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f: \\\\mathbb{R} \\\\to \\\\mathbb{R}$ is differentiable at $c \\\\in \\\\mathbb{R}$, then it is continuous at $c$.

\"", "name": "tr1", "description": ""}, "f4": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f$ is continuous on $[a,b]$ and differentiable on $(a,b)$, then $f\\'(c)=0$ for some $c \\\\in (a,b)$.

\"", "name": "f4", "description": ""}, "f3": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

Given any function defined on $[a,b]$ with $f(a) < \\\\gamma < f(b)$, then $f(c)=\\\\gamma$ for some $c \\\\in (a,b)$.

\"", "name": "f3", "description": ""}, "tr5": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f$ is continuous on $[a,b]$ and differentiable on $(a,b)$,  then $f\\'(c)=\\\\dfrac{f(b)-f(a)}{b-a}$ for some $c \\\\in (a,b)$.

\"", "name": "tr5", "description": ""}, "ch1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(t=1,tr1,if(t=2,tr2,tr3))", "name": "ch1", "description": ""}, "f5": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f$ is differentiable on $(a,b)$,  then $f\\'(c)=\\\\dfrac{f(b)-f(a)}{b-a}$ for some $c \\\\in (a,b)$.

\"", "name": "f5", "description": ""}, "tr2": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f$ is continuous on $[a,b]$ and $f(a) < \\\\gamma < f(b)$, then $f(c)=\\\\gamma$ for some $c \\\\in (a,b)$.

\"", "name": "tr2", "description": ""}, "f": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "name": "f", "description": ""}, "tr3": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f$ is continuous on $[a,b]$ and differentiable on $(a,b)$, and if $f(a) < \\\\gamma < f(b)$, then $f(c)=\\\\gamma$ for some $c \\\\in (a,b)$.

\"", "name": "tr3", "description": ""}, "f6": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f$ is continuous and differentiable on $(a,b)$,  then $f\\'(c)=\\\\dfrac{f(b)-f(a)}{b-a}$ for some $c \\\\in (a,b)$.

\"", "name": "f6", "description": ""}, "tr6": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f$ is continuous on $[a,b]$ and differentiable on $(a,b)$, and if $f\\'(x) >0$ for all $x \\\\in (a,b)$, then $f(b)>f(a)$.

\"", "name": "tr6", "description": ""}, "ch4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(f=1,f4,if(f=2,f5,f6))", "name": "ch4", "description": ""}, "tr4": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f$ is continuous on $[a,b]$ and differentiable on $(a,b)$, and if $f(a) = f(b)$, then $f\\'(c)=0$ for some $c \\\\in (a,b)$.

\"", "name": "tr4", "description": ""}, "ch3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(v=1,f1,if(v=2,f2,f3))", "name": "ch3", "description": ""}, "g": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "name": "g", "description": ""}, "t": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "name": "t", "description": ""}}, "ungrouped_variables": ["f1", "f2", "f3", "f4", "f5", "f6", "t", "tr1", "u", "tr2", "tr3", "tr4", "tr5", "tr6", "g", "f", "h", "ch1", "ch2", "ch3", "ch4", "v"], "variable_groups": [], "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

Answer the following question on continuity and differentiability. Note that every correct answer is worth 1 mark, but every wrong answer loses a mark.

", "tags": ["checked2015", "continuous", "convergence", "convergent sequences", "limits", "sequence", "sequences"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Multiple response question (2 correct out of 4) covering properties of continuity and differentiability. Selection of questions from a pool.

\n

Can choose true and false for each option. Also in one test run the second choice was incorrectly entered, rest correct,  but the feedback indicates that the third was wrong.

"}, "advice": "

You should be able to work out the correct answers from your notes.

"}, {"name": "True/false statements about properties of continuity and limits, ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"v": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "name": "v"}, "f1": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If for some sequence {$u_n$} converging to $c$, the sequence {$f(u_n)$} converges to $l$, then $f(x) \\\\to l$ as $x \\\\to c$.

\"", "description": "", "name": "f1"}, "ch2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(u=1,tr4,if(u=2,tr5,tr6))", "description": "", "name": "ch2"}, "u": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "name": "u"}, "f4": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If $f(x) \\\\not\\\\to l$ as $x$ tends to $c$, then $f(x_n) \\\\not\\\\to l$ as $n \\\\to \\\\infty$ for every sequence {$x_n$} converging to $c$.

\"", "description": "", "name": "f4"}, "f5": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If the limit of $f(x)$ as $x \\\\to c$ exists then the limit is $f(c)$.

\"", "description": "", "name": "f5"}, "h": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "name": "h"}, "f2": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If for some sequence {$x_n$} converging to $c$, the sequence {$f(x_n)$} converges to $f(c)$, then the function $f$ is continuous at $c$.

\"", "description": "", "name": "f2"}, "f3": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If $f(x) \\\\to \\\\ell$ as $x \\\\to c$ and if $g(x) \\\\to m$ as $x \\\\to c$, then $\\\\dfrac{f(x)}{g(x)} \\\\to \\\\dfrac{\\\\ell}{m}$ as $x \\\\to c$.

\"", "description": "", "name": "f3"}, "tr5": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

There exists a function $f$ such that the limit of $f(x)$ as $x \\\\to c$ exists and $f(c)$ exists, but $f$ is not continuous at $c$.

\"", "description": "", "name": "tr5"}, "ch1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(t=1,tr1,if(t=2,tr2,tr3))", "description": "", "name": "ch1"}, "tr6": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If the limit of $f(x)$ as $x \\\\to c$ exists and the limit is $f(c)$, then $f$ is continuous at $c$.

\"", "description": "", "name": "tr6"}, "tr2": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If a function $f$ is continuous at $c$, then for any sequence {$x_n$} converging to $c$, the sequence {$f(x_n)$} converges to $f(c)$.

\"", "description": "", "name": "tr2"}, "f": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "name": "f"}, "tr3": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If for every sequence {$x_n$} converging to $c$, the sequence {$f(x_n)$} converges to $f(c)$, then the function $f$ is continuous at $c$.

\"", "description": "", "name": "tr3"}, "f6": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If the limit of $f(x)$ as $x \\\\to c$ exists and if $f(c)$ exists, then $f$ is continuous at $c$.

\"", "description": "", "name": "f6"}, "ch3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(v=1,f1,if(v=2,f2,f3))", "description": "", "name": "ch3"}, "ch4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(f=1,f4,if(f=2,f5,f6))", "description": "", "name": "ch4"}, "tr4": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If $f(x) \\\\not\\\\to \\\\ell$ as $x \\\\to c$, then $f(x_n) \\\\not\\\\to \\\\ell$ as $n \\\\to \\\\infty$ for some sequence {$x_n$} converging to $c$.

\"", "description": "", "name": "tr4"}, "tr1": {"templateType": "long string", "group": "Ungrouped variables", "definition": "\"

If $f(x) \\\\to \\\\ell$ as $x \\\\to c$ and if $x_n \\\\to c$ as $n \\\\to \\\\infty$ (with each $x_n \\\\neq c$), then $f(x_n) \\\\to \\\\ell$ as $n \\\\to \\\\infty$.

\"", "description": "", "name": "tr1"}, "g": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "name": "g"}, "t": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "name": "t"}}, "ungrouped_variables": ["f1", "f2", "f3", "f4", "f5", "f6", "t", "tr1", "u", "tr2", "tr3", "tr4", "tr5", "tr6", "g", "f", "h", "ch1", "ch2", "ch3", "ch4", "v"], "functions": {}, "parts": [{"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "\n \n \n

[[0]]

\n \n \n \n", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"displayType": "checkbox", "showCellAnswerState": true, "type": "m_n_x", "maxAnswers": 0, "shuffleChoices": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "minAnswers": 0, "minMarks": 0, "shuffleAnswers": false, "variableReplacements": [], "layout": {"expression": ""}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "matrix": [[1, -1], [1, -1], ["-1", "1"], [-1, 1]], "choices": ["

{Ch1}

", "

{Ch2}

", "

{Ch3}

", "

{Ch4}

"], "unitTests": [], "marks": 0, "scripts": {}, "maxMarks": 0, "showCorrectAnswer": true, "answers": ["True", "False"], "warningType": "none"}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

Answer the following question on continuity and limits of functions. You may assume that the functions $f$ are $:\\mathbb{R} \\to \\mathbb{R}$. Note that every correct answer is worth 1 mark, but every wrong answer loses a mark.

", "tags": ["checked2015", "continuous", "convergence", "convergent sequences", "limits", "sequence", "sequences"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Multiple response question (2 correct out of 4) covering properties of continuity and limits of functions. Selection of questions from a pool.

"}, "advice": "

You should be able to work out the correct answers from your notes.

"}], "name": "", "pickQuestions": 0}], "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "

Questions on differentiation from first principles, and continuity and differentiability.

"}, "type": "exam", "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "browse": true, "showresultspage": "oncompletion", "preventleave": true, "allowregen": true, "showfrontpage": true}, "timing": {"timedwarning": {"action": "none", "message": ""}, "timeout": {"action": "none", "message": ""}, "allowPause": true}, "pickQuestions": 0, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "extensions": [], "custom_part_types": [], "resources": []}