// Numbas version: finer_feedback_settings {"metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
Statistics and probability. Two questions: using LSD and Tukey yardsticks.
"}, "type": "exam", "percentPass": 0, "feedback": {"intro": "", "advicethreshold": 0, "showactualmark": true, "feedbackmessages": [], "showanswerstate": true, "allowrevealanswer": true, "showtotalmark": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "name": "Yardsticks Practice", "question_groups": [{"pickingStrategy": "all-ordered", "name": "Group", "pickQuestions": 1, "questions": [{"name": "LSD and Tukey yardsticks, and one-way ANOVA", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"pvalue": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(ftest(VR,2,15),3)", "name": "pvalue", "description": ""}, "r1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "repeat(round(normalsample(mu1,sig1)),6)", "name": "r1", "description": ""}, "ssq": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[sum(map(x^2,x,r1)),sum(map(x^2,x,r2)),sum(map(x^2,x,r3))]", "name": "ssq", "description": ""}, "btss": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(stovern-G^2/N,2)", "name": "btss", "description": ""}, "sd1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(pstdev(r1),2)", "name": "sd1", "description": ""}, "tss": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(ss-G^2/N,2)", "name": "tss", "description": ""}, "k": {"templateType": "anything", "group": "Ungrouped variables", "definition": "3", "name": "k", "description": ""}, "dfbt": {"templateType": "anything", "group": "Ungrouped variables", "definition": "k-1", "name": "dfbt", "description": ""}, "sig2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "sig1", "name": "sig2", "description": ""}, "v1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(pvalue<=0.001,[1,0,0,0,0],pvalue<=0.01,[0,1,0,0,0],pvalue<=0.05,[0,0,1,0,0],pvalue<=0.1,[0,0,0,1,0],[0,0,0,0,1])", "name": "v1", "description": ""}, "vr": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(MBT/MRS,2)", "name": "vr", "description": ""}, "w1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(abs(m1-m2)>=tukey,[1,0,0],abs(m1-m2)>=lsd,[0,1,0],[0,0,1])", "name": "w1", "description": ""}, "rss": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(ss-stovern,2)", "name": "rss", "description": ""}, "n1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "6", "name": "n1", "description": ""}, "sd3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(pstdev(r3),2)", "name": "sd3", "description": ""}, "ss": {"templateType": "anything", "group": "Ungrouped variables", "definition": "sum(ssq)", "name": "ss", "description": ""}, "w2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(abs(m3-m2)>=tukey,[1,0,0],abs(m3-m2)>=lsd,[0,1,0],[0,0,1])", "name": "w2", "description": ""}, "sig3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "sig1", "name": "sig3", "description": ""}, "mbt": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(BTSS/dfbt,2)", "name": "mbt", "description": ""}, "r2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "repeat(round(normalsample(mu2,sig2)),6)", "name": "r2", "description": ""}, "mu2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mu1+random(3..6)", "name": "mu2", "description": ""}, "g": {"templateType": "anything", "group": "Ungrouped variables", "definition": "sum(t)", "name": "g", "description": ""}, "t": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[sum(r1),sum(r2),sum(r3)]", "name": "t", "description": ""}, "sd2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(pstdev(r2),2)", "name": "sd2", "description": ""}, "w": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[w1,w2,w3]", "name": "w", "description": ""}, "tol": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0.01", "name": "tol", "description": ""}, "v": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(vr>=11.34,[1,0,0,0,0],vr>=6.36,[0,1,0,0,0],vr>=3.68,[0,0,1,0,0],vr>=2.7,[0,0,0,1,0],[0,0,0,0,1])", "name": "v", "description": ""}, "pmsg": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[' is less than $0.001$',' lies between $0.001$ and $0.01$',' lies between $0.01$ and $0.05$',' lies between $0.05$ and $0.10$',' is greater than $0.10$']", "name": "pmsg", "description": ""}, "sig1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..4#0.2)", "name": "sig1", "description": ""}, "sqrms": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(sqrt(mrs),2)", "name": "sqrms", "description": ""}, "mrs": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(RSS/dfrs,2)", "name": "mrs", "description": ""}, "u": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(v[0]=1,0,v[1]=1,1,v[2]=1,2,v[3]=1,3,4)", "name": "u", "description": ""}, "m3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(mean(r3),2)", "name": "m3", "description": ""}, "n2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "6", "name": "n2", "description": ""}, "cmsg": {"templateType": "anything", "group": "Ungrouped variables", "definition": "['do reject','do reject','do not reject','do not reject','do not reject']", "name": "cmsg", "description": ""}, "mu1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(20..25#0.5)", "name": "mu1", "description": ""}, "stovern": {"templateType": "anything", "group": "Ungrouped variables", "definition": "sum(tsqovern)", "name": "stovern", "description": ""}, "lsd": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(2.131*sqrms*sqrt(2/n1),2)", "name": "lsd", "description": ""}, "dfrs": {"templateType": "anything", "group": "Ungrouped variables", "definition": "N-k", "name": "dfrs", "description": ""}, "yn": {"templateType": "anything", "group": "Ungrouped variables", "definition": "map(map(yeaornay(x),x,w[z]),z,0..2)", "name": "yn", "description": ""}, "tukey": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(3.67*sqrms*1/sqrt(n1),2)", "name": "tukey", "description": ""}, "w3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(abs(m3-m1)>=tukey,[1,0,0],abs(m3-m1)>=lsd,[0,1,0],[0,0,1])", "name": "w3", "description": ""}, "m1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(mean(r1),2)", "name": "m1", "description": ""}, "r3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "repeat(round(normalsample(mu3,sig3)),6)", "name": "r3", "description": ""}, "m2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(mean(r2),2)", "name": "m2", "description": ""}, "n3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "6", "name": "n3", "description": ""}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "n1+n2+n3", "name": "n", "description": ""}, "stderror": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(mrs/sqrt(n1),2)", "name": "stderror", "description": ""}, "mu3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mu2+random(4..6)", "name": "mu3", "description": ""}, "tsqovern": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[t[0]^2/n1,t[1]^2/n2,t[2]^2/n3]", "name": "tsqovern", "description": ""}}, "ungrouped_variables": ["lsd", "tukey", "sd1", "sd2", "sd3", "vr", "w3", "w2", "w1", "mbt", "n", "pmsg", "mu3", "stderror", "sqrms", "dfrs", "m1", "m3", "m2", "btss", "stovern", "tss", "dfbt", "tol", "yn", "ssq", "sig1", "v1", "sig3", "sig2", "cmsg", "rss", "tsqovern", "mu1", "g", "r2", "mu2", "ss", "k", "r3", "mrs", "r1", "u", "t", "w", "v", "n1", "n2", "n3", "pvalue"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {"pstdev": {"type": "number", "language": "jme", "definition": "sqrt(abs(l)/(abs(l)-1))*stdev(l)", "parameters": [["l", "list"]]}, "yeaornay": {"type": "string", "language": "jme", "definition": "if(n=1,'Yes','No')", "parameters": [["n", "number"]]}}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "sqrms-tol", "maxValue": "sqrms+tol", "marks": 1}], "type": "gapfill", "prompt": "\nYou are given the following ANOVA table for this data:
\nSource | df | SS | MS | VR |
---|---|---|---|---|
Between Treatments | \n$\\var{dfbt}$ | \n$\\var{btss}$ | \n$\\var{mbt}$ | \n$\\var{vr}$ | \n
Residual | \n$\\var{dfrs}$ | \n$\\var{rss}$ | \n$\\var{mrs}$ | \n- | \n
Total | \n$\\var{n-1}$ | \n$\\var{tss}$ | \n- | \n- | \n
\n
Input $\\sqrt{RMS}$ here: [[0]] to 2 decimal places.
\n\n
This will be used to calculate the LSD and Tukey yardstick values later.
\n \n ", "showCorrectAnswer": true, "marks": 0}, {"displayType": "radiogroup", "choices": ["Very strong", "Strong", "Moderate", "Weak", "None"], "displayColumns": 0, "prompt": "\nUsing ANOVA
\nUsing the $VR$ value given in the table and one-way ANOVA, what is the strength of evidence against the null hypothesis that the mean times taken are the same for the three groups?
\n ", "distractors": ["", "", "", "", ""], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "showCorrectAnswer": true, "matrix": "v", "marks": 0}, {"displayType": "radiogroup", "choices": ["We reject the null hypothesis at the $0.1\\%$ level", "We reject the null hypothesis at the $1\\%$ level.", "We reject the null hypothesis at the $5\\%$ level.", "We do not reject the null hypothesis but consider further investigation.", "We do not reject the null hypothesis."], "displayColumns": 1, "prompt": "Hence what is your decision based on the above ANOVA analysis?
", "distractors": ["", "", "", "", ""], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "showCorrectAnswer": true, "matrix": "v", "marks": 0}, {"scripts": {}, "gaps": [{"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "m1", "maxValue": "m1", "marks": 1}, {"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "m2", "maxValue": "m2", "marks": 1}, {"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "m3", "maxValue": "m3", "marks": 1}], "type": "gapfill", "prompt": "\nUsing the Yardsticks
\nFill in this table with the appropriate values for the mean values of the groups, all decimals to 2 decimal places:
\n\n | $\\overline{x}_i$ | \n
Group A | \n[[0]] | \n
---|---|
Group B | \n[[1]] | \n
Group C | \n[[2]] | \n
\n ", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "lsd-tol", "maxValue": "lsd+tol", "marks": 1}, {"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "tukey-tol", "maxValue": "tukey+tol", "marks": 1}, {"layout": {"expression": ""}, "choices": ["Groups $A$ and $B$", "Groups $B$ and $C$", "Groups $A$ and $C$"], "matrix": "w", "type": "m_n_x", "maxAnswers": 0, "shuffleChoices": false, "marks": 0, "scripts": {}, "minMarks": 0, "minAnswers": 0, "maxMarks": 0, "shuffleAnswers": false, "showCorrectAnswer": true, "answers": ["Definite Significant Difference", "Possible Significant Difference", "No Significant Difference"]}], "type": "gapfill", "prompt": "
Now find the LSD and Tukey yardsticks from the above data. Use the value to 2 decimal places you found for $\\sqrt{RMS}$:
\nLSD= [[0]]
\nTukey= [[1]]
\nUsing these yardsticks fill in the following table indicating if there is a possible or definite significant difference between the pairs of groups mean times in undertaking the tasks:
\n[[2]]
", "showCorrectAnswer": true, "marks": 0}], "statement": "\nThe following data arose in a comparison of the effects of alcohol on the time taken to complete a task. There were three groups of subjects; Group A had no alcohol, Group B had two units over 1 hour and Group C had 4 units over 1 hour. The responses are the times (in seconds) taken to complete a word-matching task.
\nGroup A (0 units) | \n$\\var{r1[0]}$ | \n$\\var{r1[1]}$ | \n$\\var{r1[2]}$ | \n$\\var{r1[3]}$ | \n$\\var{r1[4]}$ | \n$\\var{r1[5]}$ | \n
---|---|---|---|---|---|---|
Group B (2 units) | \n$\\var{r2[0]}$ | \n$\\var{r2[1]}$ | \n$\\var{r2[2]}$ | \n$\\var{r2[3]}$ | \n$\\var{r2[4]}$ | \n$\\var{r2[5]}$ | \n
Group C (4 units) | \n$\\var{r3[0]}$ | \n$\\var{r3[1]}$ | \n$\\var{r3[2]}$ | \n$\\var{r3[3]}$ | \n$\\var{r3[4]}$ | \n$\\var{r3[5]}$ | \n
\n \n ", "tags": ["ANOVA", "average", "checked2015", "data analysis", "definite significant difference", "degrees of freedom", "F-test", "hypothesis testing", "Least significant difference", "lsd", "LSD", "mean ", "possible significant difference", "PSY2010", "standard deviation", "statistics", "stats", "Tukey", "tukey ", "variance", "yardsticks", "Yardsticks"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t \t\t
15/11/2012:
\n \t\t \t\t
This question cones from editing a one-way Anova example
Added tags and description
\n \t\t \t\t\n \t\t \n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "
LSD and Tukey yardsticks on three treatments. Also one-way Anova test on same set of data.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "Using the Yardsticks
\nThe mean values for each group are:
\n\n
\n | $\\overline{x}_i$ | \n
Group A | \n$\\var{m1}$ | \n
---|---|
Group B | \n$\\var{m2}$ | \n
Group C | \n$\\var{m3}$ | \n
The differences between the mean values for the groups are:
\nBetween $A$ and $B=\\;|\\var{m1}-\\var{m2}|=\\var{abs(m1-m2)}$
\nBetween $B$ and $C=\\;|\\var{m2}-\\var{m3}|=\\var{abs(m2-m3)}$
\nBetween $A$ and $C=\\;|\\var{m1}-\\var{m3}|=\\var{abs(m1-m3)}$
\nWe compare these differences with the LSD and Tukey yardsticks:
\nLSD yardstick = $2.131\\times\\var{sqrms}\\times\\sqrt{2/\\var{n1}}=\\var{lsd}$ to 2 decimal places, where $\\var{sqrms}$ is the value of $\\sqrt{RMS}$ found above.
\nTukey yardstick = $3.67\\times\\var{sqrms}\\times\\sqrt{1/\\var{n1}}=\\var{tukey}$ to 2 decimal places.
\nIf the difference of the means:
\n\n
\n
\n
Hence we have the following for the groups:
\nPairs of Groups | Definite Significant Difference | Possible Significant Difference | No Significant Difference |
---|---|---|---|
Means of Groups A and B | \n{yn[0][0]} | \n{yn[0][1]} | \n{yn[0][2]} | \n
Means of Groups B and C | \n{yn[1][0]} | \n{yn[1][1]} | \n{yn[1][2]} | \n
Means of Groups A and C | \n{yn[2][0]} | \n{yn[2][1]} | \n{yn[2][2]} | \n
Here is the ANOVA table corresponding to this data:
\n\n
Source | df | SS | MS | VR |
---|---|---|---|---|
Between Treatments | \n$\\var{m-1}$ | \n$\\var{btss}$ | \n$\\var{msbt}$ | \n$\\var{vr}$ | \n
Between Blocks | \n$\\var{n-1}$ | \n$\\var{bbss}$ | \n$\\var{msbb}$ | \n$\\var{vrbb}$ | \n
Residual | \n$\\var{dfr}$ | \n$\\var{rss}$ | \n$\\var{rs}$ | \n- | \n
Total | \n$\\var{m*n-1}$ | \n$\\var{tss}$ | \n- | \n- | \n
Input $\\sqrt{RMS}$ here: [[0]] to 2 decimal places.
\nThis will be used later to calculate the yardsticks.
", "showCorrectAnswer": true, "marks": 0}, {"displayType": "radiogroup", "choices": ["$p$ less than $0.1\\%$
", "$p$ lies between $0.1\\%$ and $1\\%$
", "$p$ lies between $1 \\%$ and $5\\%$
", "$p$ lies between $5 \\%$ and $10\\%$
", "$p$ is greater than $10\\%$
"], "displayColumns": 1, "prompt": "Given the value of $VR$ in the table above, find the range for the $p$ value by looking up the critical values of $F_{3,12}$ (one-sided).
\n$10\\%$ | \n$5\\%$ | \n$1\\%$ | \n$0.1\\%$ | \n
$2.61$ | \n$3.49$ | \n$5.95$ | \n$10.8$ | \n
Given the $p$-value and the range you have found, what is the strength of evidence against the null hypothesis that there is no difference in the treatments offered by the sun-creams?
", "distractors": ["", "", "", "", ""], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "showCorrectAnswer": true, "matrix": "v", "marks": 0}, {"displayType": "radiogroup", "choices": ["We reject the null hypothesis at the $0.1\\%$ level", "We reject the null hypothesis at the $1\\%$ level.", "We reject the null hypothesis at the $5\\%$ level.", "We do not reject the null hypothesis but more investigation is needed.", "We do not reject the null hypothesis."], "displayColumns": 1, "prompt": "Hence what is your decision based on the above ANOVA analysis?
", "distractors": ["", "", "", "", ""], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "showCorrectAnswer": true, "matrix": "v", "marks": 0}, {"scripts": {}, "gaps": [{"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "me[0]-tol", "maxValue": "me[0]+tol", "marks": 0.5}, {"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "me[1]-tol", "maxValue": "me[1]+tol", "marks": 0.5}, {"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "me[2]-tol", "maxValue": "me[2]+tol", "marks": 0.5}, {"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "me[3]-tol", "maxValue": "me[3]+tol", "marks": 0.5}, {"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "lsd-tol", "maxValue": "lsd+tol", "marks": 1}, {"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "tukey-tol", "maxValue": "tukey+tol", "marks": 1}], "type": "gapfill", "prompt": "Using the yardsticks
\nEnter the sample means for the sun-creams:
\nW: [[0]], X:[[1]], Y:[[2]], Z:[[3]] (to 2 decimal places).
\nCalclate the LSD and Tukey yardsticks using the value for $\\sqrt{RMS}$ to 2 decimal places obtained above.
\n\n
LSD yardstick value = [[4]] (to 2 decimal places).
\n\n
Tukey yardstick value = [[5]] (to 2 decimal places).
\n", "showCorrectAnswer": true, "marks": 0}, {"layout": {"expression": ""}, "choices": ["$W$ and $X$", "$W$ and $Y$", "$W$ and $Z$", "$X$ and $Y$", "$X$ and $Z$", "$Y$ and $Z$"], "matrix": "w", "prompt": "
Using these yardsticks fill in the following table indicating if there is a possible or definite significant difference between the sample means of pairs of sun-creams.
\n", "type": "m_n_x", "maxAnswers": 0, "shuffleChoices": false, "marks": 0, "scripts": {}, "maxMarks": 0, "minAnswers": 0, "minMarks": 0, "shuffleAnswers": false, "showCorrectAnswer": true, "answers": ["Definite Significant Difference", "Possible Significant Difference", "No Significant Difference"]}], "statement": "
To test the effectiveness of sun-tan creams, five volunteers A, B, C, D, E each tried four creams W, X, Y, Z on various parts of their legs. They were then subjected to ultra-violet radiation and an estimate of the degree of burning was made (higher figures indicate greater burning). The results are given below with some totals:
\n\n | W | \nX | \nY | \nZ | \nTotals | \n
A | \n{r[0][0]} | \n{r[0][1]} | \n{r[0][2]} | \n{r[0][3]} | \n{t[0]} | \n
B | \n{r[1][0]} | \n{r[1][1]} | \n{r[1][2]} | \n{r[1][3]} | \n{t[1]} | \n
C | \n{r[2][0]} | \n{r[2][1]} | \n{r[2][2]} | \n{r[2][3]} | \n{t[2]} | \n
D | \n{r[3][0]} | \n{r[3][1]} | \n{r[3][2]} | \n{r[3][3]} | \n{t[3]} | \n
E | \n{r[4][0]} | \n{r[4][1]} | \n{r[4][2]} | \n{r[4][3]} | \n{t[4]} | \n
Totals | \n{cols[0]} | \n{cols[1]} | \n{cols[2]} | \n{cols[3]} | \n{tot} | \n
\n
\n
LSD and Tukey yardsticks on five treatments. Also two-way Anova test on same set of data.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "The mean values for each sun-cream are:
\n\n
\n | $\\overline{x}_i$ | \n
W | \n$\\var{me[0]}$ | \n
---|---|
X | \n$\\var{me[1]}$ | \n
Y | \n$\\var{me[2]}$ | \n
Z | \n$\\var{me[3]}$ | \n
The differences between the mean values for the sun-creams are:
\nBetween $W$ and $X=\\;|\\var{me[0]}-\\var{me[1]}|=\\var{abs(me[0]-me[1])}$
\nBetween $W$ and $Y=\\;|\\var{me[0]}-\\var{me[2]}|=\\var{abs(me[0]-me[2])}$
\nBetween $W$ and $Z=\\;|\\var{me[0]}-\\var{me[3]}|=\\var{abs(me[0]-me[3])}$
\nBetween $X$ and $Y=\\;|\\var{me[1]}-\\var{me[2]}|=\\var{abs(me[1]-me[2])}$
\nBetween $X$ and $Z=\\;|\\var{me[1]}-\\var{me[3]}|=\\var{abs(me[1]-me[3])}$
\nBetween $Y$ and $Z=\\;|\\var{me[2]}-\\var{me[3]}|=\\var{abs(me[2]-me[3])}$
\nWe compare these differences with the LSD and Tukey yardsticks:
\nLSD yardstick = $2.179\\times\\var{sqrms}\\times\\sqrt{2/\\var{n}}=\\var{lsd}$ to 2 decimal places, where $\\var{sqrms}$ is the value of $\\sqrt{RMS}$ found above.
\nTukey yardstick = $4.2\\times\\var{sqrms}\\times\\sqrt{1/\\var{n}}=\\var{tukey}$ to 2 decimal places.
\nIf the difference of the means:
\n\n
\n
\n
Hence we have the following for the sun-creams:
\nPairs of Sun-creams | Definite Significant Difference | Possible Significant Difference | No Significant Difference |
---|---|---|---|
Means of W and X | \n{yn[0][0]} | \n{yn[0][1]} | \n{yn[0][2]} | \n
Means of W and Y | \n{yn[1][0]} | \n{yn[1][1]} | \n{yn[1][2]} | \n
Means of W and Z | \n{yn[2][0]} | \n{yn[2][1]} | \n{yn[2][2]} | \n
Means of X and Y | \n{yn[3][0]} | \n{yn[3][1]} | \n{yn[3][2]} | \n
Means of X and Z | \n{yn[4][0]} | \n{yn[4][1]} | \n{yn[4][2]} | \n
Means of Y and Z | \n{yn[5][0]} | \n{yn[5][1]} | \n{yn[5][2]} | \n