// Numbas version: finer_feedback_settings {"name": "Week 2 quiz", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-shuffled", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], [], []], "questions": [{"name": "Efficient mean and variance for random sums of IID random variables", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Using generating functions is always the most efficient way to determine the mean and variance of a random sum of iid
random variables?

", "advice": "

Not necessarily, the law of total expectation and variance might be a quicker way to find
these quantities.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["False", "True"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "MGF of the standard normal distribution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

The MGF of the standard Normal distribution ($\\mu = 0, \\sigma^2 = 1$) is given by $\\frac{s^2}{2}$?

", "advice": "

This is actually the CGF of the standard normal.

\n

The MGF is $\\exp(\\frac{s^2}{2})$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["False", "True"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Binomial distribution and skewness", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

When does the skewness of the Binomial distribution with paramaters $n, p$  have the following properties?

", "advice": "

The third cumulant of the Binomial distribution is $np(1-p)(1-2p)$ which is:

\n\n

This can be seen by examining the $1-2p$ term, since the $np(1-p)$ term is always positive.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["Symmetric (no skew)", "Positive skewness", "Negative skewness"], "matrix": [["1", 0, 0], [0, "1", 0], [0, 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["p=0.5", "p < 0.5", "p > 0.5"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Equal Cumulants", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Which of the following distributions have all their cumulants the same?

", "advice": "

All of the cumulants of the Poisson are equal to its mean.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["Poisson", "Negative Binomial", "Binomial"], "matrix": ["1", "-1", "-1"], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Normal distribution moments/cumulants", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

For the normal distribution, which of the following is equal to 0?

", "advice": "

This is found by deriving, $m_X(s)$, $M_X(s)$ and $\\log(m_X(s))$ three times.

\n

By inspecting all three of these we see that only the MGF will not bring an $s$ outside the exponential during derivation and so will be the only one of these to not equal zero.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["The $3^\\mbox{rd}$ central moment $\\mu_3$", "The $3^\\mbox{rd}$ raw moment $\\mu'_3$", "The $3^\\mbox{rd}$ cumulant $\\kappa_3$"], "matrix": ["1", "-1", "1"], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Discrete RV MGF", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Discrete random variables  do not have an MGF.

", "advice": "

Discrete random variables can have an MGF, and it is not difficult to convert a PGF into an MGF $m_X(s) = P_X(e^s)$.

\n

Of course, continuous random variables cannot have a PGF.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["False", "True"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Moment/Cumulant coefficient", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Choose the appropriate option.

", "advice": "

The raw moments are found with the MGF $m_X(s)$

\n

The central moments are found with the MGF about the mean $M_X(s)$

\n

The cumulants are found with the CGF $\\log(m_X(s))$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["The $k^{\\mbox{th}}$ raw moment $\\mu'_k$ is given by the coefficient of $\\frac{s^k}{k!}$ in which function?", "The $k^{\\mbox{th}}$ central moment $\\mu_k$ is given by the coefficient of $\\frac{s^k}{k!}$ in which function?", "The $k^{\\mbox{th}}$ cumulant $\\kappa_k$ is given by the coefficient of $\\frac{s^k}{k!}$ in which function?"], "matrix": [["1", "0", 0], ["0", "1", 0], [0, "0", "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["$m_X(s)$", "$M_X(s)$", "$\\log(m_X(s))$"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Properties of MGF", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Which of these is true about an MGF?

", "advice": "

$m(0) = \\mbox{E}[e^0] = \\mbox{E}[1] = 1$ so the MGF always exists at $s=0$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "after"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["The MGF always exists at $s=0$", "The MGF always exists at $s=1$", "The MGF always exists for $s \\in [0, 1]$"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Find expectation of X using MGF", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Select which option is correct for the formula for obtaining the expected value from the MGF.

", "advice": "

We use $s = 1$ for PGFs but $s = 0$ for MGFs when computing expectation based on evaluating the derivative of the generating function.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$E[X] = m'_X(0)$", "$E[X] = m'_X(1)$", "$E[X] = m'_X(s)$"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Law of total Expectation/Variance", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

For $X_i \\overset{\\text{iid}}{\\sim} X$.

\n

And $N$ as a discrete random variable.

\n

Let $Y = X_1 + X_2 + \\cdots + X_N$.

\n

Which of the following is True?

", "advice": "

Yes we can use the law of total expectation and variance.

\n

The law of total expection is $E[Y] = E[E[Y|N]]$.

\n

The law of total variation is $Var[Y] = E[Var[Y|N]] + Var[E[Y|N]]$.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["The law of total expectation can be used to find the $E[Y]$", "The law of total variance can be used to find the $Var[Y]$"], "matrix": [["1", 0], ["1", 0]], "layout": {"type": "all", "expression": ""}, "answers": ["True", "False"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Continuous RV MGF", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

All continuous random variables have an MGF?

", "advice": "

The MGF does not exist for some continuous distributions, that is we cannot find an interval around $s = 0$ for which $E[e^{sX}]$ exists.  One example is the Cauchy distribution, which does not have any finite moments.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["False", "True"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "extensions": [], "custom_part_types": [], "resources": []}