// Numbas version: finer_feedback_settings {"name": "Week 3 quiz", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": true, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-shuffled", "pickQuestions": 1, "questionNames": ["", "", ""], "variable_overrides": [[], [], []], "questions": [{"name": "Range of RV transformation log", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "
If $X$ has a range {a} < $X$ < {b} and $Y=\\log(X)$.
\nWhat is the range of $Y$? (rounded to 3 decimal places)
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 10#1)", "description": "Upper bound of Y
", "templateType": "randrange", "can_override": true}, "step": {"name": "step", "group": "Ungrouped variables", "definition": "random(1 .. 5#1)", "description": "This make sure b > a
", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "a + step", "description": "Upper bound of X
", "templateType": "anything", "can_override": false}, "newb": {"name": "newb", "group": "Ungrouped variables", "definition": "max(ln(a), ln(b))", "description": "", "templateType": "anything", "can_override": false}, "newa": {"name": "newa", "group": "Ungrouped variables", "definition": "min(ln(a), ln(b))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "step", "b", "newa", "newb"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]] < y < [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{newa}", "showPreview": true, "checkingType": "dp", "checkingAccuracy": 3, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{newb}", "showPreview": true, "checkingType": "dp", "checkingAccuracy": 3, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Range of RV transformation power", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "If $X$ has a range {a} < $X$ < {b} and $Y=X^{\\var{c}}$.
\nWhat is the range of $Y$?
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-10 .. 10#1)", "description": "Upper bound of Y
", "templateType": "randrange", "can_override": true}, "step": {"name": "step", "group": "Ungrouped variables", "definition": "random(1 .. 5#1)", "description": "This make sure b > a
", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2 .. 4#1)", "description": "Scalar value for transformation Y=X^c
", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "a + step", "description": "Upper bound of X
", "templateType": "anything", "can_override": false}, "newb": {"name": "newb", "group": "Ungrouped variables", "definition": "max(a^c, b^c)", "description": "", "templateType": "anything", "can_override": false}, "newa": {"name": "newa", "group": "Ungrouped variables", "definition": "min(a^c, b^c)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "step", "b", "c", "newa", "newb"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]] < y < [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{newa}", "showPreview": true, "checkingType": "dp", "checkingAccuracy": 3, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{newb}", "showPreview": true, "checkingType": "dp", "checkingAccuracy": 3, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Range of RV transformation scalar", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "If $X$ has a range {a} < $X$ < {b} and $Y=\\var{c}X$.
\nWhat is the range of $Y$?
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-10 .. 10#1)", "description": "Upper bound of Y
", "templateType": "randrange", "can_override": true}, "step": {"name": "step", "group": "Ungrouped variables", "definition": "random(1 .. 5#1)", "description": "This make sure b > a
", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "Scalar value for transformation Y=cX
", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "a + step", "description": "Upper bound of X
", "templateType": "anything", "can_override": false}, "newb": {"name": "newb", "group": "Ungrouped variables", "definition": "max(a*c, b*c)", "description": "", "templateType": "anything", "can_override": false}, "newa": {"name": "newa", "group": "Ungrouped variables", "definition": "min(a*c, a*c)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "step", "b", "c", "newa", "newb"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]] < y < [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{newa}", "showPreview": true, "checkingType": "dp", "checkingAccuracy": 3, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{newb}", "showPreview": true, "checkingType": "dp", "checkingAccuracy": 3, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "Group", "pickingStrategy": "all-shuffled", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], []], "questions": [{"name": "Any kind of transformation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "Which of the following can be used to handle any kind of transformation?
", "advice": "In principle any transform can be accommodated by the generic approach, although it might be difficult or impossible to do analytically.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["The generic transformation approach", "The 1-1 transformation approach", "Evaluating $f(\\alpha(x))$ where $\\alpha(\\cdot)$ is the transformation function and $f(x)$ is the pdf for $X$"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "CDF for probability integral transform", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "To apply the probability integral transform, the CDF of the random variable must be analytically available?
", "advice": "To apply the probability integral transform, we only require that the quantile function has an analytical form.
\nThere are some probability distributions, called quantile distributions, that are defined explicitly in terms of the their quantile function, and the corresponding CDF is not analytically tractable.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["False", "True"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Chi-square and Normal transformation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "Let $X \\sim N(0, 1)$ (standard Normal distribution)
\nAnd $Y = X^2$
\nThen $Y \\sim \\chi^2(1)$ (Chi-squared distribution with 1 degree of freedom)
\nIf $Z = \\sqrt{Y}$ why is $Z$ not the standard normal distribution?
", "advice": "Taking the square of a standard normal produces a chi-square random variable.
\nBut taking the square root of the chi-square won't produce a normal since the range of the resulting distribution will be $(0, \\infty)$ not the entire set of real numbers and the PDF of $Z$ is $2$ times the PDF of $X$ so it still integrates to $1$.
\nPerforming both of these transformations is a good exercise.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["The range of $Z$ is $(0, \\infty)$ which is not unbounded like the Normal distribution requires.", "The PDF of $Z$ is different from the PDF of $X$", "The range of $Z$ is $(-\\pi, \\pi)$ which is not unbounded like the Normal distribution requires."], "matrix": ["1", "1", "-2"], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Find quantile functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "Which of these distributions requires integration to compute their quantile function?
", "advice": "The quantile function of the Normal distribution depends on the error function, which is an integral.
\nThe Exponential and Cauchy distributions have nice closed-form expressions for their quantile function.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["Normal", "Exponential", "Cauchy"], "matrix": ["1", "-1", "-1"], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Generating function transform", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "We cannot use generating functions for handling transformations of random variables?
", "advice": "Generating functions can be used for some simple transformations, such as sums of independent random variables.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["False", "True"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Inverse of 1-1 transformation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "For every 1-1 transformation, there is a corresponding inverse transform?
", "advice": "In the definition of 1-1 transformations, the transform must be invertible.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["True", "False"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Jacobian inverse", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "To compute the Jacobian term for 1-1 transformations, we must differentiate the inverse transform?
", "advice": "We can in principle avoid differentiating the inverse transform by using the result that $\\frac{dx}{dy} = 1/\\frac{dy}{dx}$, where the RHS only requires the forward transformation. This is nice to do when differentiating the inverse transform is difficult.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["False", "True"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Probability integral transform", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "We can use the probability integral transform to sample from distributions based on uniform random numbers?
", "advice": "Being able to simulate random numbers from distributions based on uniform random numbers is one of the main benefits of the probability integral transform.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["True", "False"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Change of variable integration", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "There is a strong connection between the result for 1-1 transformation and change of variables in integration?
", "advice": "When we perform a change of variables in integration, the pdf of the corresponding transformation appears as the integrand.
\n$\\int_a^b f(x) dx = \\int_{\\alpha(a)}^{\\alpha(b)}f(\\alpha^{-1}(y))\\Big|\\frac{dx}{dy}\\Big| dy$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["True", "False"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}], "extensions": [], "custom_part_types": [], "resources": []}