// Numbas version: finer_feedback_settings {"name": "Coursework 3 - Further Differentiation", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": "40", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], []], "questions": [{"name": "Differentiation 3 Sine and Cosine functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"ans22": {"description": "", "definition": "n1[1]", "group": "Ungrouped variables", "templateType": "anything", "name": "ans22"}, "ans31": {"description": "", "definition": "n1[3]*n1[4]*-1", "group": "Ungrouped variables", "templateType": "anything", "name": "ans31"}, "ans12": {"description": "", "definition": "n1[0]", "group": "Ungrouped variables", "templateType": "anything", "name": "ans12"}, "ans11": {"description": "", "definition": "n1[0]", "group": "Ungrouped variables", "templateType": "anything", "name": "ans11"}, "ans41": {"description": "", "definition": "n1[5]", "group": "Ungrouped variables", "templateType": "anything", "name": "ans41"}, "ans21": {"description": "", "definition": "n1[1]*-1", "group": "Ungrouped variables", "templateType": "anything", "name": "ans21"}, "n1": {"description": "", "definition": "shuffle(2..8)[0..6]", "group": "Ungrouped variables", "templateType": "anything", "name": "n1"}, "ans32": {"description": "", "definition": "n1[4]", "group": "Ungrouped variables", "templateType": "anything", "name": "ans32"}}, "tags": ["rebelmaths"], "rulesets": {}, "statement": "
$y = \\sin (x) => \\frac{dy}{dx} = \\cos (x)$
\n$y = \\sin (ax) => \\frac{dy}{dx} = a\\cos (ax)$
\n$y = \\cos (x) => \\frac{dy}{dx} = -\\sin (x)$
\n$y = \\cos (ax) => \\frac{dy}{dx} = -a\\sin (ax)$
\n\nDifferentiate each of the following:
\nNote: Put the value of the answer of the sine/cosine function in brackets, i.e. write $\\sin2x$ as $\\sin(2x)$
", "variable_groups": [], "preamble": {"js": "", "css": ""}, "functions": {}, "advice": "i)
\n$y = \\sin \\var{n1[0]}x$
\n$\\frac{dy}{dx} = \\var{n1[0]}cos(\\var{n1[0]}x) $
\nii)
\n$y = \\cos \\var{n1[1]}x$
\n$\\frac{dy}{dx} = -\\var{n1[1]}sin(\\var{n1[1]}x) $
\niii)
\n$y = \\var{n1[3]}\\cos \\var{n1[4]}x$
\n$\\frac{dy}{dx} = (-1 \\times \\var{n1[3]} \\times \\var{n1[4]})sin(\\var{n1[4]}x) = \\var{ans31}sin(\\var{ans32}x)$
\niv)
\n$y = \\var{n1[5]}\\sin x$
\n$\\frac{dy}{dx} = (\\var{n1[5]} \\times 1)cos(x) = \\var{ans41}cos(x)$
", "ungrouped_variables": ["n1", "ans11", "ans12", "ans21", "ans22", "ans31", "ans32", "ans41"], "parts": [{"customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "prompt": "$y = \\sin (\\var{n1[0]}x)$
\n$\\frac{dy}{dx} =$ [[0]]
", "extendBaseMarkingAlgorithm": true, "unitTests": [], "sortAnswers": false, "type": "gapfill", "marks": 0, "scripts": {}, "adaptiveMarkingPenalty": 0, "customName": "", "variableReplacements": [], "gaps": [{"checkingAccuracy": 0.001, "variableReplacementStrategy": "originalfirst", "checkVariableNames": false, "checkingType": "absdiff", "showPreview": true, "type": "jme", "scripts": {}, "adaptiveMarkingPenalty": 0, "customName": "", "vsetRange": [0, 1], "failureRate": 1, "customMarkingAlgorithm": "", "valuegenerators": [{"value": "", "name": "x"}], "extendBaseMarkingAlgorithm": true, "answer": "{ans11}cos({ans12}x)", "unitTests": [], "vsetRangePoints": 5, "marks": 1, "variableReplacements": [], "useCustomName": false, "showCorrectAnswer": true, "showFeedbackIcon": true}], "useCustomName": false, "showCorrectAnswer": true, "showFeedbackIcon": true}, {"customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "prompt": "$y = \\cos (\\var{n1[1]}x)$
\n$\\frac{dy}{dx} =$ [[0]]
", "extendBaseMarkingAlgorithm": true, "unitTests": [], "sortAnswers": false, "type": "gapfill", "marks": 0, "scripts": {}, "adaptiveMarkingPenalty": 0, "customName": "", "variableReplacements": [], "gaps": [{"checkingAccuracy": 0.001, "variableReplacementStrategy": "originalfirst", "checkVariableNames": false, "checkingType": "absdiff", "showPreview": true, "type": "jme", "scripts": {}, "adaptiveMarkingPenalty": 0, "customName": "", "vsetRange": [0, 1], "failureRate": 1, "customMarkingAlgorithm": "", "valuegenerators": [{"value": "", "name": "x"}], "extendBaseMarkingAlgorithm": true, "answer": "{ans21}sin({ans22}x)", "unitTests": [], "vsetRangePoints": 5, "marks": 1, "variableReplacements": [], "useCustomName": false, "showCorrectAnswer": true, "showFeedbackIcon": true}], "useCustomName": false, "showCorrectAnswer": true, "showFeedbackIcon": true}, {"customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "prompt": "$y = \\var{n1[3]} \\cos( \\var{n1[4]}x)$
\n$\\frac{dy}{dx} =$ [[0]]
", "extendBaseMarkingAlgorithm": true, "unitTests": [], "sortAnswers": false, "type": "gapfill", "marks": 0, "scripts": {}, "adaptiveMarkingPenalty": 0, "customName": "", "variableReplacements": [], "gaps": [{"checkingAccuracy": 0.001, "variableReplacementStrategy": "originalfirst", "checkVariableNames": false, "checkingType": "absdiff", "showPreview": true, "type": "jme", "scripts": {}, "adaptiveMarkingPenalty": 0, "customName": "", "vsetRange": [0, 1], "failureRate": 1, "customMarkingAlgorithm": "", "valuegenerators": [{"value": "", "name": "x"}], "extendBaseMarkingAlgorithm": true, "answer": "{ans31}sin({ans32}x)", "unitTests": [], "vsetRangePoints": 5, "marks": 1, "variableReplacements": [], "useCustomName": false, "showCorrectAnswer": true, "showFeedbackIcon": true}], "useCustomName": false, "showCorrectAnswer": true, "showFeedbackIcon": true}, {"customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "prompt": "$y = \\var{n1[5]} \\sin (x)$
\n$\\frac{dy}{dx} =$ [[0]]
", "extendBaseMarkingAlgorithm": true, "unitTests": [], "sortAnswers": false, "type": "gapfill", "marks": 0, "scripts": {}, "adaptiveMarkingPenalty": 0, "customName": "", "variableReplacements": [], "gaps": [{"checkingAccuracy": 0.001, "variableReplacementStrategy": "originalfirst", "checkVariableNames": false, "checkingType": "absdiff", "showPreview": true, "type": "jme", "scripts": {}, "adaptiveMarkingPenalty": 0, "customName": "", "vsetRange": [0, 1], "failureRate": 1, "customMarkingAlgorithm": "", "valuegenerators": [{"value": "", "name": "x"}], "extendBaseMarkingAlgorithm": true, "answer": "{ans41}cos(x)", "unitTests": [], "vsetRangePoints": 5, "marks": 1, "variableReplacements": [], "useCustomName": false, "showCorrectAnswer": true, "showFeedbackIcon": true}], "useCustomName": false, "showCorrectAnswer": true, "showFeedbackIcon": true}], "metadata": {"description": "", "licence": "None specified"}, "type": "question"}, {"name": "Katy's copy of Differentiation 4 Rule for exponential and natural log", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}, {"name": "Katy Dobson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/854/"}], "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["num", "ans1", "ans2", "ans3", "num2", "num1"], "parts": [{"marks": 0, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "gaps": [{"vsetrangepoints": 5, "checkingtype": "absdiff", "answer": "{ans1}e^({ans1}x)", "type": "jme", "scripts": {}, "checkingaccuracy": 0.001, "checkvariablenames": false, "marks": 1, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": false, "vsetrange": [0, 1], "showpreview": true, "expectedvariablenames": []}], "type": "gapfill", "scripts": {}, "prompt": "$y = e^{\\var{num[0]}x}$
\n$\\frac{dy}{dx} =$ [[0]]
\n"}, {"marks": 0, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "gaps": [{"vsetrangepoints": 5, "checkingtype": "absdiff", "answer": "{ans2}e^({ans2}x)", "type": "jme", "scripts": {}, "checkingaccuracy": 0.001, "checkvariablenames": false, "marks": 1, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "vsetrange": [0, 1], "showpreview": true, "expectedvariablenames": []}], "type": "gapfill", "scripts": {}, "prompt": "$y = e^{\\var{num1}x}$
\n$\\frac{dy}{dx} =$ [[0]]
"}, {"marks": 0, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "gaps": [{"vsetrangepoints": 5, "checkingtype": "absdiff", "answer": "{ans3}e^({num2}x)", "type": "jme", "scripts": {}, "checkingaccuracy": 0.001, "checkvariablenames": false, "marks": 1, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "vsetrange": [0, 1], "showpreview": true, "expectedvariablenames": []}], "type": "gapfill", "scripts": {}, "prompt": "$y = \\var{num[1]}e^{\\var{num2}x}$
\n$\\frac{dy}{dx} =$ [[0]]
"}, {"marks": 0, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "gaps": [{"vsetrangepoints": 5, "checkingtype": "absdiff", "answer": "1/x", "type": "jme", "scripts": {}, "checkingaccuracy": 0.001, "checkvariablenames": false, "marks": 1, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "vsetrange": [0, 1], "showpreview": true, "expectedvariablenames": []}], "type": "gapfill", "scripts": {}, "prompt": "$y = \\ln \\var{num[2]}x$
\n$\\frac{dy}{dx} =$ [[0]]
"}, {"marks": 0, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "gaps": [{"vsetrangepoints": 5, "checkingtype": "absdiff", "answer": "1/x", "type": "jme", "scripts": {}, "checkingaccuracy": 0.001, "checkvariablenames": false, "marks": 1, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "vsetrange": [0, 1], "showpreview": true, "expectedvariablenames": []}], "type": "gapfill", "scripts": {}, "prompt": "$y = \\ln \\var{num[3]}x$
\n$\\frac{dy}{dx} =$ [[0]]
"}, {"marks": 0, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "gaps": [{"vsetrangepoints": 5, "checkingtype": "absdiff", "answer": "1/x", "type": "jme", "scripts": {}, "checkingaccuracy": 0.001, "checkvariablenames": false, "marks": 1, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "vsetrange": [0, 1], "showpreview": true, "expectedvariablenames": []}], "type": "gapfill", "scripts": {}, "prompt": "$y = \\ln \\var{num[4]}x$
\n$\\frac{dy}{dx} =$ [[0]]
"}], "variables": {"num2": {"definition": "random(-5..-2)", "templateType": "anything", "name": "num2", "group": "Ungrouped variables", "description": ""}, "num": {"definition": "shuffle(2..8)[0..5]", "templateType": "anything", "name": "num", "group": "Ungrouped variables", "description": ""}, "num1": {"definition": "random(0.5..4.5)", "templateType": "anything", "name": "num1", "group": "Ungrouped variables", "description": ""}, "ans1": {"definition": "num[0]", "templateType": "anything", "name": "ans1", "group": "Ungrouped variables", "description": ""}, "ans3": {"definition": "num2*num[1]", "templateType": "anything", "name": "ans3", "group": "Ungrouped variables", "description": ""}, "ans2": {"definition": "num1", "templateType": "anything", "name": "ans2", "group": "Ungrouped variables", "description": ""}}, "preamble": {"css": "", "js": ""}, "variable_groups": [], "metadata": {"licence": "None specified", "description": ""}, "rulesets": {}, "statement": "Remember the rules:
\n$y = e^ x => \\frac{dy}{dx} = e^ x$
\n$y = e^ {ax} => \\frac{dy}{dx} = ae^ {ax}$
\n$y = \\ln (x) => \\frac{dy}{dx} = \\frac{1}{x}$
\n$y = \\ln (ax) => \\frac{dy}{dx} = \\frac{1}{x}$
\nDifferentiate each of the following:
", "functions": {}, "advice": "i)
\n$y = e^{\\var{num[0]}x}$
\n$\\frac{dy}{dx} = \\var{ans1}e^{\\var{num[0]}x}$
\nii)
\n$y = e^{\\var{num1}x}$
\n$\\frac{dy}{dx} = \\var{ans2}e^{\\var{num1}x}$
\niii)
\n$y = \\var{num[1]}e^{\\var{num2}x}$
\n$\\frac{dy}{dx} = (\\var{num[1]} \\times \\var{num2})e^{\\var{num2}x} = \\var{ans3}e^{\\var{num2}x}$
\niv)
\n$y = \\ln \\var{num[2]}x$
\n$\\frac{dy}{dx} = \\frac{1}{x}$
\nv)
\n$y = \\ln \\var{num[3]}x$
\n$\\frac{dy}{dx} = \\frac{1}{x}$
\nvi)
\n$y = \\ln \\var{num[4]}x$
\n$\\frac{dy}{dx} = \\frac{1}{x}$
", "tags": ["rebelmaths"], "type": "question"}, {"name": "Differentiation 6 Product Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}], "functions": {}, "ungrouped_variables": [], "tags": ["rebelmaths"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepsPenalty": 0, "prompt": "Find the derivative of $ y = \\var{n1[0]}x^{\\var{n1[1]}}\\sin{\\var{n1[2]}x}$
\n$\\frac{dy}{dx} =$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Use the following table to help you with the steps:
\n$u = $_________________ | \n$v =$_________________ | \n
$\\frac{du}{dx} =$_________________ | \n$\\frac{dv}{dx} =$_________________ | \n
Find the derivative of y with respect to x given $ y = \\var{n2[0]}\\sqrt x \\ln{\\var{n2[1]}x}$
\n$\\frac{dy}{dx} =$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Use the following table to help you with the steps:
\n$u = $_________________ | \n$v =$_________________ | \n
$\\frac{du}{dx} =$_________________ | \n$\\frac{dv}{dx} =$_________________ | \n
Differentiate $ y = x^{\\var{n3[0]}}\\cos{\\var{n3[1]}x}$
\n$\\frac{dy}{dx} =$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Use the following table to help you with the steps:
\n$u = $_________________ | \n$v =$_________________ | \n
$\\frac{du}{dx} =$_________________ | \n$\\frac{dv}{dx} =$_________________ | \n
Determine the rate of change of voltage, given $ V = \\var{n4[0]}t \\sin{\\var{n4[1]}t} $ volts when $t = \\var{num4} seconds.$
\nIn formula:
\n$\\frac{dV}{dt} =$ [[0]]
\nIn units (correct to 2 decimal places!!):
\n$\\frac{dV}{dt} =$ [[1]] Volts per second
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Use the following table to help you with the steps:
\n$u = $_________________ | \n$v =$_________________ | \n
$\\frac{du}{dx} =$_________________ | \n$\\frac{dv}{dx} =$_________________ | \n
Remember the Product Rule:
\nThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Remember the Quotient Rule:
\nThe quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]
Use the following table to help you with the steps:
\n$u = $_________________ | \n$v =$_________________ | \n
$\\frac{du}{dx} =$_________________ | \n$\\frac{dv}{dx} =$_________________ | \n
Find the derivative of $ y = \\frac{\\var{n1[0]} \\sin{\\var{n1[1]}x}}{\\var{n1[2]}x^{\\var{n1[3]}}} $
\n$\\frac{dy}{dx} =$ [[0]]
", "customMarkingAlgorithm": ""}, {"stepsPenalty": 0, "extendBaseMarkingAlgorithm": true, "gaps": [{"failureRate": 1, "scripts": {}, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "answer": "((cos({n2[2]}t) * {ans21} * e^({n2[1]}t)) + ({n2[0]} * {n2[2]} * e^({n2[1]}t) * sin({n2[2]}t)))/(cos({n2[2]}t)*cos({n2[2]}t))", "checkingType": "absdiff", "showPreview": true, "vsetRangePoints": 5, "answerSimplification": "std", "customMarkingAlgorithm": "", "type": "jme", "customName": "", "adaptiveMarkingPenalty": 0, "unitTests": [], "variableReplacements": [], "marks": 1, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "valuegenerators": [{"value": "", "name": "t"}], "checkVariableNames": false, "showFeedbackIcon": true}], "type": "gapfill", "scripts": {}, "showCorrectAnswer": true, "customName": "", "adaptiveMarkingPenalty": 0, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "unitTests": [], "variableReplacements": [], "steps": [{"extendBaseMarkingAlgorithm": true, "type": "information", "scripts": {}, "showCorrectAnswer": true, "customName": "", "adaptiveMarkingPenalty": 0, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "unitTests": [], "variableReplacements": [], "marks": 0, "showFeedbackIcon": true, "prompt": "Use the following table to help you with the steps:
\n$u = $_________________ | \n$v =$_________________ | \n
$\\frac{du}{dx} =$_________________ | \n$\\frac{dv}{dx} =$_________________ | \n
Differentiate $ y = \\frac{\\var{n2[0]}e^{\\var{n2[1]}t}}{\\cos \\var{n2[2]}t} $
\n$\\frac{dy}{dt} =$ [[0]]
", "customMarkingAlgorithm": ""}, {"stepsPenalty": 0, "extendBaseMarkingAlgorithm": true, "gaps": [{"failureRate": 1, "scripts": {}, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "answer": "(({n3[0]}*({n3[1]}x^{{n3[2]}} + {n3[3]}x)) - ({n3[0]}x*({ans32}x^{ans31} + {n3[3]})))/(({n3[1]}x^{{n3[2]}} + {n3[3]}x)^2)", "checkingType": "absdiff", "showPreview": true, "vsetRangePoints": 5, "answerSimplification": "std", "customMarkingAlgorithm": "", "type": "jme", "customName": "", "adaptiveMarkingPenalty": 0, "unitTests": [], "variableReplacements": [], "marks": 1, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "valuegenerators": [{"value": "", "name": "x"}], "checkVariableNames": false, "showFeedbackIcon": true}, {"mustBeReduced": false, "scripts": {}, "allowFractions": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "strictPrecision": false, "notationStyles": ["plain", "en", "si-en"], "showPrecisionHint": false, "precisionType": "dp", "customMarkingAlgorithm": "", "type": "numberentry", "precisionMessage": "You have not given your answer to the correct precision.", "customName": "", "adaptiveMarkingPenalty": 0, "correctAnswerStyle": "plain", "unitTests": [], "variableReplacements": [], "minValue": "{ans33}", "marks": 1, "maxValue": "{ans33}", "precision": "3", "showFeedbackIcon": true, "precisionPartialCredit": 0, "mustBeReducedPC": 0, "correctAnswerFraction": false}], "type": "gapfill", "scripts": {}, "showCorrectAnswer": true, "customName": "", "adaptiveMarkingPenalty": 0, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "unitTests": [], "variableReplacements": [], "steps": [{"extendBaseMarkingAlgorithm": true, "type": "information", "scripts": {}, "showCorrectAnswer": true, "customName": "", "adaptiveMarkingPenalty": 0, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "unitTests": [], "variableReplacements": [], "marks": 0, "showFeedbackIcon": true, "prompt": "Use the following table to help you with the steps:
\n$u = $_________________ | \n$v =$_________________ | \n
$\\frac{du}{dx} =$_________________ | \n$\\frac{dv}{dx} =$_________________ | \n
Find the slope of the curve $ y = \\frac{\\var{n3[0]}x}{\\var{n3[1]}x^{\\var{n3[2]}} + \\var{n3[3]}x}$ at the point $(\\var{num31},\\var{num32})$
\nIn formula:
\n$\\frac{dy}{dx} =$ [[0]]
\nIn units (correct to 3 decimal places!!):
\n$\\frac{dy}{dx} =$ Slope= [[1]]
", "customMarkingAlgorithm": ""}], "advice": "i)
\n$ y = \\frac{\\var{n1[0]} \\sin{\\var{n1[1]}x}}{\\var{n1[2]}x^{\\var{n1[3]}}} $
\n$\\frac{dy}{dx} = \\frac{((\\var{n1[2]}x^\\var{n1[3]}*\\var{ans11}*\\cos(\\var{n1[1]}x))) - ((\\var{n1[0]}*\\sin(\\var{n1[1]}x) * \\var{ans13}x^\\var{ans12}))}{\\var{ans14}x^\\var{ans15}} $
\nii)
\n$ y = \\frac{\\var{n2[0]}e^{\\var{n2[1]}t}}{cos \\var{n2[2]}t} $
\n$\\frac{dy}{dt} = \\frac{(\\cos(\\var{n2[2]}t) * \\var{ans21} * e^{(\\var{n2[1]}t))} + (\\var{n2[0]} * \\var{n2[2]} * e^{(\\var{n2[1]}t)} * \\sin(\\var{n2[2]}t))}{\\cos(\\var{n2[2]}t)*\\cos(\\var{n2[2]}t)}$
\niii)
\n$ y = \\frac{\\var{n3[0]}x}{\\var{n3[1]}x^{\\var{n3[2]}} + \\var{n3[3]}x}$
\n$\\frac{dy}{dx} = \\frac{(\\var{n3[0]}*(\\var{n3[1]}x^{\\var{n3[2]}} + \\var{n3[3]}x)) - (\\var{n3[0]}x*(\\var{ans32}x^\\var{ans31} + \\var{n3[3]}))}{(\\var{n3[1]}x^{\\var{n3[2]}} + \\var{n3[3]}x)^2} $
\n", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question"}, {"name": "Differentiation 8 Chain Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}], "preamble": {"css": "", "js": ""}, "statement": "Remember the Chain Rule:
\nThe Chain rule says that if $y$ is a function of $x$, then
$\\frac{dy}{dx} = \\frac{dy}{du}.\\frac{du}{dx}$
i)
\n\\[\\simplify[std]{y = ({a} * x^{m}+{b})^{n}}\\]
\n$\\frac{dy}{dx} = (\\var{a} \\times \\var{m} \\times \\var{n})x ^ {\\var{m}-1} \\times (\\var{a} \\times x^{\\var{m}}+(\\var{{b}}))^{\\var{n}-1}$
\n\\[\\simplify[std]{{a*m*n}x ^ {m-1} * ({a} * x^{m}+{b})^{n-1}}\\]
\nii)
\n\\[\\simplify[std]{f(x) = ({a2} x^{m2}+{c2}x^2+{b2})^{n2}}\\]
\n$\\frac{dy}{dt} = \\var{n2}((\\var{a2} \\times \\var{m2})x ^ {\\var{m2}-1}+2 \\times \\var{c2}x) \\times (\\var{a2} \\times x^\\var{m2} + \\var{c2}x^2 + \\var{b2})^{\\var{n2}-1}$
\n\\[\\simplify[std]{{n2}({a2*m2}x ^ {m2-1}+{2*c2}x) * ({a2} * x^{m2}+{c2}x^2+{b2})^{n2-1}}\\]
\niii)
\n\\[\\simplify[std]{y = sqrt({a3} * x^{m3}+{b3})}\\]
\n$\\frac{dy}{dx} = \\frac{((\\var{a3}*\\var{m3})x ^ {\\var{m3}-1})}{(2*\\sqrt(\\var{a3} * x^\\var{m3}+\\var{b3}))} $
\n\\[\\simplify[std]{({a3*m3}x ^ {m3-1})/(2*sqrt({a3} * x^{m3}+{b3}))}\\]
\niv)
\n\\[\\simplify[std]{y = cos(e^({a4}x) +{b4}x^2+{c4})}\\]
\n$\\frac{dy}{dx} = -(\\var{a4}e^{(\\var{a4}x)}+{2*\\var{b4}}x) \\times sin(e^{(\\var{a4}x)} +\\var{b4}x^2+\\var{c4})$
\n\n\\[\\simplify[std]{-({a4}e^({a4}x)+{2*b4}x)*sin(e^({a4}x) +{b4}x^2+{c4})}\\]
\nv)
\n\\[\\simplify[std]{y = ln(({a5}x+{b5})^{m5})}\\]
\n$\\frac{dy}{dx} = \\frac{({\\var{m5} \\times \\var{a5}})}{(\\var{a5}x+\\var{b5})}$
\n\\[\\simplify[std]{({m5*a5})/({a5}x+{b5})}\\]
\n\n", "ungrouped_variables": [], "tags": ["rebelmaths"], "variables": {"b3": {"description": "", "group": "q3", "name": "b3", "definition": "s13*random(1..9)", "templateType": "anything"}, "b": {"description": "", "group": "q1", "name": "b", "definition": "s1*random(1..9)", "templateType": "anything"}, "s25": {"description": "", "group": "q5", "name": "s25", "definition": "random(1,-1)", "templateType": "anything"}, "b2": {"description": "", "group": "q2", "name": "b2", "definition": "s1*random(1..9)", "templateType": "anything"}, "c4": {"description": "", "group": "q4", "name": "c4", "definition": "s24*random(1..9)", "templateType": "anything"}, "a3": {"description": "", "group": "q3", "name": "a3", "definition": "random(2..9)", "templateType": "anything"}, "s12": {"description": "", "group": "q2", "name": "s12", "definition": "random(1,-1)", "templateType": "anything"}, "s15": {"description": "", "group": "q5", "name": "s15", "definition": "random(1,-1)", "templateType": "anything"}, "m2": {"description": "", "group": "q2", "name": "m2", "definition": "random(3..7)", "templateType": "anything"}, "n2": {"description": "", "group": "q2", "name": "n2", "definition": "random(3..5)", "templateType": "anything"}, "a5": {"description": "", "group": "q5", "name": "a5", "definition": "random(2..9)", "templateType": "anything"}, "m": {"description": "", "group": "q1", "name": "m", "definition": "random(2..9)", "templateType": "anything"}, "s1": {"description": "", "group": "q1", "name": "s1", "definition": "random(1,-1)", "templateType": "anything"}, "b4": {"description": "", "group": "q4", "name": "b4", "definition": "s14*random(1..9)", "templateType": "anything"}, "n": {"description": "", "group": "q1", "name": "n", "definition": "random(5..9)", "templateType": "anything"}, "a": {"description": "", "group": "q1", "name": "a", "definition": "random(2..9)", "templateType": "anything"}, "m3": {"description": "", "group": "q3", "name": "m3", "definition": "random(2..8)", "templateType": "anything"}, "s14": {"description": "", "group": "q4", "name": "s14", "definition": "random(1,-1)", "templateType": "anything"}, "s22": {"description": "", "group": "q2", "name": "s22", "definition": "random(1,-1)", "templateType": "anything"}, "m5": {"description": "", "group": "q5", "name": "m5", "definition": "random(3..9)", "templateType": "anything"}, "a4": {"description": "", "group": "q4", "name": "a4", "definition": "random(2..9)", "templateType": "anything"}, "b5": {"description": "", "group": "q5", "name": "b5", "definition": "s15*random(1..9)", "templateType": "anything"}, "c2": {"description": "", "group": "q2", "name": "c2", "definition": "s22*random(1..9)", "templateType": "anything"}, "s24": {"description": "", "group": "q4", "name": "s24", "definition": "random(1,-1)", "templateType": "anything"}, "a2": {"description": "", "group": "q2", "name": "a2", "definition": "random(2..9)", "templateType": "anything"}, "s13": {"description": "", "group": "q3", "name": "s13", "definition": "random(1,-1)", "templateType": "anything"}, "c5": {"description": "", "group": "q5", "name": "c5", "definition": "s25*random(1..9)", "templateType": "anything"}}, "parts": [{"marks": 0, "unitTests": [], "type": "gapfill", "variableReplacements": [], "useCustomName": false, "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "gaps": [{"vsetRange": [0, 1], "showCorrectAnswer": true, "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "checkVariableNames": false, "answer": "{a*m*n}x ^ {m-1} * ({a} * x^{m}+{b})^{n-1}", "useCustomName": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "answerSimplification": "std", "extendBaseMarkingAlgorithm": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "customName": "", "marks": 1, "type": "jme", "failureRate": 1, "checkingAccuracy": 0.001, "showPreview": true, "unitTests": [], "vsetRangePoints": 5, "showFeedbackIcon": true, "checkingType": "absdiff"}], "prompt": "\\[\\simplify[std]{y = ({a} * x^{m}+{b})^{n}}\\]
\n$\\displaystyle \\frac{dy}{dx}=\\;$[[0]]
\n", "customName": ""}, {"marks": 0, "unitTests": [], "type": "gapfill", "variableReplacements": [], "useCustomName": false, "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "gaps": [{"vsetRange": [0, 1], "showCorrectAnswer": true, "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "checkVariableNames": false, "answer": "{n2}({a2*m2}x ^ {m2-1}+{2*c2}x) * ({a2} * x^{m2}+{c2}x^2+{b2})^{n2-1}", "useCustomName": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "answerSimplification": "std", "extendBaseMarkingAlgorithm": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "customName": "", "marks": 1, "type": "jme", "failureRate": 1, "checkingAccuracy": 0.001, "showPreview": true, "unitTests": [], "vsetRangePoints": 5, "showFeedbackIcon": true, "checkingType": "absdiff"}], "prompt": "\\[\\simplify[std]{y = ({a2} * x^{m2}+{c2}x^2+{b2})^{n2}}\\]
\n$\\displaystyle \\frac{dy}{dx}=\\;$[[0]]
\n", "customName": ""}, {"marks": 0, "unitTests": [], "type": "gapfill", "variableReplacements": [], "useCustomName": false, "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "gaps": [{"vsetRange": [0, 1], "showCorrectAnswer": true, "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "checkVariableNames": false, "answer": "({a3*m3}x ^ {m3-1})/(2*sqrt({a3} * x^{m3}+{b3}))", "useCustomName": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "answerSimplification": "std", "extendBaseMarkingAlgorithm": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "customName": "", "marks": 1, "type": "jme", "failureRate": 1, "checkingAccuracy": 0.001, "showPreview": true, "unitTests": [], "vsetRangePoints": 5, "showFeedbackIcon": true, "checkingType": "absdiff"}], "prompt": "\\[\\simplify[std]{y = sqrt({a3} * x^{m3}+{b3})}\\]
\n$\\displaystyle \\frac{dy}{dx}=\\;$[[0]]
\n", "customName": ""}, {"marks": 0, "unitTests": [], "type": "gapfill", "variableReplacements": [], "useCustomName": false, "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "gaps": [{"vsetRange": [0, 1], "showCorrectAnswer": true, "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "checkVariableNames": false, "answer": "-({a4}e^({a4}x)+{2*b4}x)*sin(e^({a4}x) +{b4}x^2+{c4})", "useCustomName": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "answerSimplification": "std", "extendBaseMarkingAlgorithm": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "customName": "", "marks": 1, "type": "jme", "failureRate": 1, "checkingAccuracy": 0.001, "showPreview": true, "unitTests": [], "vsetRangePoints": 5, "showFeedbackIcon": true, "checkingType": "absdiff"}], "prompt": "\\[\\simplify[std]{y = cos(e^({a4}x) +{b4}x^2+{c4})}\\]
\n$\\displaystyle \\frac{dy}{dx}=\\;$[[0]]
\n", "customName": ""}, {"marks": 0, "unitTests": [], "type": "gapfill", "variableReplacements": [], "useCustomName": false, "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "gaps": [{"vsetRange": [0, 1], "showCorrectAnswer": true, "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "checkVariableNames": false, "answer": "({m5*a5})/({a5}x+{b5})", "useCustomName": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "answerSimplification": "std", "extendBaseMarkingAlgorithm": true, "adaptiveMarkingPenalty": 0, "scripts": {}, "customName": "", "marks": 1, "type": "jme", "failureRate": 1, "checkingAccuracy": 0.001, "showPreview": true, "unitTests": [], "vsetRangePoints": 5, "showFeedbackIcon": true, "checkingType": "absdiff"}], "prompt": "\\[\\simplify[std]{f(x) = ln(({a5}x+{b5})^{m5})}\\]
\n$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n", "customName": ""}], "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "", "licence": "None specified"}, "variable_groups": [{"name": "q1", "variables": ["a", "s1", "b", "m", "n"]}, {"name": "q2", "variables": ["a2", "c2", "b2", "s22", "s12", "m2", "n2"]}, {"name": "q3", "variables": ["a3", "s13", "b3", "m3"]}, {"name": "q4", "variables": ["a4", "s24", "c4", "b4", "s14"]}, {"name": "q5", "variables": ["a5", "c5", "b5", "s25", "s15", "m5"]}], "type": "question"}, {"name": "Differentiation which method1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "variables": {}, "functions": {}, "advice": "", "variablesTest": {"maxRuns": 100, "condition": ""}, "ungrouped_variables": [], "rulesets": {}, "tags": [], "variable_groups": [], "statement": "Which rule(s) of differentiation is required to differentiate each of the following functions (tick all that apply).
", "preamble": {"js": "", "css": ""}, "metadata": {"description": "", "licence": "None specified"}, "parts": [{"distractors": ["This rule is used when you are differentiating a function which is made up of one function multiplied by another function.", "This rule is used when you are differentiating a function which is made up of one function divided by another function.", "This rule is used when you are differentiating a function which is the composition of two or more functions."], "shuffleChoices": false, "minMarks": 0, "maxMarks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "displayColumns": 0, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "variableReplacements": [], "prompt": "$y=e^x\\cos(x)$
", "unitTests": [], "choices": ["Product Rule", "Quotient Rule", "Chain Rule"], "marks": 0, "type": "1_n_2", "matrix": ["1", 0, 0], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup"}, {"distractors": ["This rule is used when you are differentiating a function which is made up of one function multiplied by another function.", "This rule is used when you are differentiating a function which is made up of one function divided by another function.", "This rule is used when you are differentiating a function which is the composition of tow or more functions."], "shuffleChoices": false, "minMarks": 0, "maxMarks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "displayColumns": 0, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "variableReplacements": [], "prompt": "$y=\\frac{e^x}{\\cos(x)+2}$
", "unitTests": [], "choices": ["Product Rule", "Quotient Rule", "Chain Rule"], "marks": 0, "type": "1_n_2", "matrix": ["0", "1", 0], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup"}, {"distractors": ["This rule is used when you are differentiating a function which is made up of one function multiplied by another function.", "This rule is used when you are differentiating a function which is made up of one function divided by another function.", "This rule is used when you are differentiating a function which is the composition of tow or more functions."], "shuffleChoices": false, "minMarks": 0, "maxMarks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "displayColumns": 0, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "variableReplacements": [], "prompt": "$y=\\cos(e^x)$
", "unitTests": [], "choices": ["Product Rule", "Quotient Rule", "Chain Rule"], "marks": 0, "type": "1_n_2", "matrix": ["0", "0", "1"], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup"}], "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "warnifunattempted", "message": "Please note you have not completed all questions on this page
"}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "warn", "message": "Please note you are about to timeout of the session and your result may not be automatically saved to Minerva. Please remember to save your answers and result at the end.
"}, "timedwarning": {"action": "warn", "message": "Please note you are about to timeout of the session and your result may not be automatically saved to Minerva. Please remember to save your answers and result at the end.
"}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "This assessment will count towards your module grade. You have unlimited attempts before the deadline. Only your last attempts grade will be saved. Please also save your answers for feedback and proof of result at the end in case it does not automatically save to Minerva.
", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Katy Dobson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/854/"}], "extensions": [], "custom_part_types": [], "resources": []}