// Numbas version: exam_results_page_options {"name": "Further Differentiation", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": "0", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", ""], "variable_overrides": [[], []], "questions": [{"name": "Differentiation: Exponential and Logarithmic functions - Gradient of Hill", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Evi Papadaki", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18113/"}], "tags": [], "metadata": {"description": "

Using basic derivatives to calculate the gradient function of a hill $y=-e^{x}+b\\ln{\\left(x\\right)+c$, and then substituting values to find the gradient at specific distance from the sea. 

", "licence": "None specified"}, "statement": "

The cross-section of a hill with a steep cliff face is modelled by the equation:
\\[y=-e^{x}+\\var{b}\\ln{\\left(x\\right)+\\var{c}}\\]
where $y$ is the height of the ground above sea level, measured in decametres ($\\mathrm{dam}$), and $x$ is the horizontal distance from the sea, also measured in decametres.

\n

The model applies for values of $x$ in the range $0.01\\le\\ x\\le3$.

", "advice": "

a) To find the gradient of the hill at any given horizontal distance from the sea, $x$, we need to differentiate the equation

\n

\\[y=-e^{x}+\\var{b}\\ln{\\left(x\\right)+\\var{c}}\\]

\n

with respect to x:

\n
\n

\\[ \\begin{split} \\frac{dy}{dx}&=-e^x+\\var{b}\\times\\frac{1}{x}+0 \\\\&=-e^x+\\frac{\\var{b}}{x} \\end{split}\\]

\n
\n

\\[ \\begin{split} \\frac{dy}{dx}&=-e^x+\\frac{1}{x}+0 \\\\&=-e^x+\\frac{\\var{b}}{x} \\end{split}\\]

\n

Therefore, the formula that describes the gradient of the hill at any horizontal distance from the sea is:

\n

\\[ \\begin{split} \\frac{dy}{dx}&=-e^x+\\frac{\\var{b}}{x} \\end{split}\\]

\n

b) We can use the formula from part (a) to calculate the gradient at specific points. 

\n

Remember that the distance in this problem is measured in decametres ($\\mathrm{dam}$) and $1 ~~\\mathrm{dam}$ = $10~~ \\mathrm{m}$.

\n

So, when $x=1$:

\n

\\[ \\begin{split} \\frac{dy}{dx}&=-e^1+\\frac{\\var{b}}{1} \\\\&=-e+\\var{b} \\\\ &= \\var{ansb1} ~ \\text{[2 d.p.]}\\end{split}\\]

\n

Thus, the gradient of the hill at a horizontal distance of $1~~\\mathrm{dam}$ from the sea is $\\frac{dy}{dx}=\\var{ansb1} ~~ \\mathrm{dam}$.

\n

When $x=0.1$:

\n

\\[ \\begin{split} \\frac{dy}{dx}&=-e^{0.1}+\\frac{\\var{b}}{0.1} \\\\ &= \\var{ansb2} ~ \\text{[2 d.p.]}\\end{split}\\]

\n

Thus, the gradient of the hill at a horizontal distance of $0.1~~\\mathrm{dam}$ from the sea is $\\frac{dy}{dx}=\\var{ansb2} ~~ \\mathrm{dam}$.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random (1..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(4..10)", "description": "", "templateType": "anything", "can_override": false}, "ansB2": {"name": "ansB2", "group": "Ungrouped variables", "definition": "precround(-e^(0.1)+10*{b},2)", "description": "", "templateType": "anything", "can_override": false}, "ansB1": {"name": "ansB1", "group": "Ungrouped variables", "definition": "precround(-e^1+{b},2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["b", "c", "ansB2", "ansB1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the formula that describes the gradient of the hill at any given horizontal distance from the sea.

\n

$\\frac{dy}{dx}=$ [[0]].

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-e^x+{b}/x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the gradient of the hill at a horizontal distance of:

\n\n

[[0]] $\\mathrm{dam}$

\n\n

[[1]] $\\mathrm{dam}$

\n

Give your answers to 2 decimal places when necessary.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ansB1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ansB2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Differentiation: Exponential and Logarithmic functions - Max Temperature", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Evi Papadaki", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18113/"}], "tags": [], "metadata": {"description": "

Calculating the rate of change of the temperature during a chemical reaction using the chain rule in a function of the form $T=ate^{-t}$, and finding the maximum temperature of the reaction.

", "licence": "None specified"}, "statement": "

Iron is mixed with an acid in an insulated container. The temperature, $T$°C, above room temperature, at time $t$ minutes after the metal is added to the acid is given by:
\\[T=\\var{a}te^{-t}\\]

", "advice": "

a) To find the rate of change at a specific time, we need to first differentiate the function 

\n

\\[ T=\\var{a}te^{-t} \\]

\n

with respect to $t$.

\n

To differentiate the function, we need to notice that $T$ is of the form $T=u(t) \\times v(t)$. In other words $T$ is the product of the functions $u=\\var{a}t$ and $v=e^{-t}$.

\n

Therefore, we can use the product rule:

\n

\\[ \\begin{split} \\frac{dT}{dt}&= \\frac{du}{dt}\\times v+u\\times \\frac{dv}{dt} \\end{split}\\] 

\n

First, we need to calculate the derivatives $\\frac{du}{dt}$ and $\\frac{dv}{dt}$:

\n

\\[ \\begin{split} u(t)&=\\var{a}t\\qquad \\text{and} \\qquad v(t)&=e^{-t} \\\\ \\frac{du}{dt}&=\\var{a}~~~~~\\qquad  \\qquad \\frac{dv}{dt}&=-e^{-t}\\end{split} \\]

\n

Substituting these results into the product rule formula, we can obtain the derivative of $T$:

\n

\\[ \\begin{split} \\frac{dT}{dt}&= \\frac{du}{dt}v+u\\frac{dv}{dt} \\\\ &=\\var{a}e^{-t}+\\var{a}t \\left(-e^{-t} \\right) \\\\ &=\\var{a}e^{-t}-\\var{a}te^{-t}\\end{split}\\]

\n

Factorising,

\n

\\[ \\begin{split} \\frac{dT}{dt}&= \\var{a}e^{-t}(1-t)\\end{split}\\]

\n

Now, we can substitute $t=\\var{t1}$ and calculate the rate of change of the temperature $\\var{t1}$ minutes after the metal is added:

\n

\\[ \\begin{split} \\frac{dT}{dt}&= \\var{a}e^{-\\var{t1}}(1-\\var{t1}) \\\\&= \\simplify{{a}e^{-{t1}}(1-{t1})} \\\\ &=\\var{ansa} ~~\\text{[2.dp]}\\end{split}\\]

\n

Therefore, the rate of change of the temperature when $t=\\var{t1}$ is $\\frac{dT}{dt}=\\var{ansa} ^\\circ C/min$.

\n

b) When the temperature reaches maximum, the rate of change of the temperature will be $0$. So, to find the time when the temperature reaches its maximum we must solve $\\frac{dT}{dt}=0$. Using our answer from a): 

\n

\\[ \\begin{split} \\var{a}e^{-t}(1-t)&=0 \\end{split}\\]

\n

Since, $\\var{a}e^{-t} > 0$ for every value of $t$, this equation can only be equal to zero when 

\n

\\[ \\begin{split} 1-t &=0 \\\\ t&=1 \\end{split}\\]

\n

Thus, the maximum temperature will be reached when $t=1$.

\n

Finally, to calculate the temperature we need to substitute $t=1$ in the original function $T$:

\n

\\[ \\begin{split} T&=\\var{a}te^{-t} \\\\\\\\  T_{max}&=\\var{a}\\times 1\\times e^{-1} \\\\&=\\frac{\\var{a}}{e} \\\\ &=\\var{ansb} ~~\\text{[2.d.p.]} \\end{split}\\]

\n

Thus, the maximum temperature of the mixture is $\\var{ansb} ^\\circ C$ above room temperature. 

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(50..80)", "description": "", "templateType": "anything", "can_override": false}, "t1": {"name": "t1", "group": "Ungrouped variables", "definition": "random(3..10)", "description": "", "templateType": "anything", "can_override": false}, "Ansa": {"name": "Ansa", "group": "Ungrouped variables", "definition": "precround({a}e^(-t1)(1-{t1}),2)", "description": "", "templateType": "anything", "can_override": false}, "Ansb": {"name": "Ansb", "group": "Ungrouped variables", "definition": "precround({a}/e,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "t1", "Ansa", "Ansb"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the rate of change of the temperature $\\var{t1}$ minutes after the metal is added.

\n

When $t=\\var{t1}$ minutes then $\\frac{dT}{dt}=$ [[0]] $^\\circ \\mathrm{C}/\\mathrm{min}$.

\n

Give your answer to two decimal places, if needed.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ansa}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the maximum temperature of the mixture. 

\n

The maximum temperature of the mixture is  [[0]] $^\\circ \\mathrm{C}$ above room temperature.

\n

Give your answer to two decimal places, if needed.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{Ansb}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": []}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Evi Papadaki", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18113/"}], "extensions": [], "custom_part_types": [], "resources": []}