// Numbas version: finer_feedback_settings
{"name": "Solving equations involving logs and exponentials", "duration": 0, "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 0, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "feedback": {"showtotalmark": true, "advicethreshold": 0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Solving exponential equations using logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["exp", "exponential", "exponentials", "logarithm", "Logarithm", "Logarithms", "logarithms", "Logs", "logs", "solving", "solving equations", "Solving equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "
a)
\nWe start solving the equation one operation at a time by doing the inverse to both sides, when we get to undoing the exponential we apply a log to both sides, we then use a log law and continue solving.
\n\n\n\n\n$\\var{a}$ | \n$=$ | \n$\\simplify{{p}({b})^(n/{d})+{c}}$ | \n | \n
\n\n$\\simplify{{a-c}}$ | \n$=$ | \n$\\simplify{{p}({b})^(n/{d})}$ | \n(subtract $\\var{c}$ from both sides) | \n
\n\n$\\var{frac}$ | \n$=$ | \n$\\simplify{{b}^(n/{d})}$ | \n(divide both sides by $\\var{p}$) | \n
\n\n$\\log(\\var{frac})$ | \n$=$ | \n$\\log(\\var{b}^{\\frac{n}{\\var{d}}})$ | \n(take the log of both sides) | \n
\n\n | \n$=$ | \n$\\frac{n}{\\var{d}}\\log(\\var{b})$ | \n(use a log law) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\frac{\\log(\\var{frac})}{\\log(\\var{b})}}$ | \n$=$ | \n$\\frac{n}{\\var{d}}$ | \n(divide both sides by $\\log(\\var{b})$) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\frac{\\var{d}\\log(\\var{frac})}{\\log(\\var{b})}}$ | \n$=$ | \n$n$ | \n(multiply both sides by $\\var{d}$) | \n
\n\n
\n\nb)
\nWe start solving the equation one operation at a time by doing the inverse to both sides, when we get to undoing the exponential we apply a log to both sides, we then use a log law and continue solving.
\n\n\n\n\n${\\var{FV}}$ | \n$=$ | \n$\\displaystyle{\\simplify{{pay}((1+{int})^n-1)/{int}}}$ | \n | \n
\n\n$\\simplify{{FV*int}}$ | \n$=$ | \n$\\displaystyle{\\simplify{{pay}((1+{int})^n-1)}}$ | \n(multiply both sides by $\\var{int}$) | \n
\n\n$\\displaystyle{\\simplify[simplifyFractions]{{FV*int}/{pay}}}$ | \n$=$ | \n$\\displaystyle{\\simplify{(1+{int})^n-1}}$ | \n(divide both sides by $\\var{pay}$) | \n
\n\n$\\displaystyle{\\simplify[simplifyFractions]{{FV*int}/{pay}+1}}$ | \n$=$ | \n$\\displaystyle{\\simplify{(1+{int})^n}}$ | \n(add $1$ to both sides) | \n
\n\n$\\displaystyle{\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}}$ | \n$=$ | \n$\\displaystyle{\\simplify{(1+{int})^n}}$ | \n(tidy up left hand side) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\log\\left(\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}\\right)}$ | \n$=$ | \n$\\displaystyle{\\log\\left((\\var{1+int})^n\\right)}$ | \n(take the log of both sides) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\log\\left(\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}\\right)}$ | \n$=$ | \n$\\displaystyle{n\\log(\\var{1+int})}$ | \n(use a log law) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\frac{\\log\\left(\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}\\right)}{\\log(\\var{1+int})}}$ | \n$=$ | \n$n$ | \n(divide both sides by $\\log(\\var{1+int})$) | \n
\n\n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"test": {"name": "test", "group": "b", "definition": "fv*int/pay", "description": "", "templateType": "anything", "can_override": false}, "periods": {"name": "periods", "group": "b", "definition": "log(FV*int/pay+1)/log(1+int)", "description": "", "templateType": "anything", "can_override": false}, "logb": {"name": "logb", "group": "Ungrouped variables", "definition": "log(b)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1.05..1.5#0.05)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1000..2000#20)", "description": "", "templateType": "anything", "can_override": false}, "logfrac": {"name": "logfrac", "group": "Ungrouped variables", "definition": "log(frac)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(20..a-10#20)", "description": "", "templateType": "anything", "can_override": false}, "frac": {"name": "frac", "group": "Ungrouped variables", "definition": "(a-c)/p", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "d*logfrac/logb", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "b", "definition": "random(0.01..0.10#0.01)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2,4,3,12,26,52)", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(2,5,10,20,(a-c)/2,(a-c)/5,(a-c)/10,(a-c)/20)", "description": "", "templateType": "anything", "can_override": false}, "pay": {"name": "pay", "group": "b", "definition": "random(100..2000#100)", "description": "", "templateType": "anything", "can_override": false}, "amc": {"name": "amc", "group": "Ungrouped variables", "definition": "a-c", "description": "", "templateType": "anything", "can_override": false}, "FV": {"name": "FV", "group": "b", "definition": "random(20000..100000#500)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "p", "c", "b", "frac", "logfrac", "logb", "d", "amc", "n"], "variable_groups": [{"name": "b", "variables": ["FV", "pay", "int", "periods", "test"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Solve the following equation for $n$
\n$\\begin{align*}\\simplify{{a}={p}({b})^(n/{d})+{c}}.\\end{align*}$
\n\n$n=$ [[0]]
\n
\nNote: Typing $\\log(5)$ will input the value $\\log_{10}(5)$, whereas $\\log5$ will not work.
Note: Typing $\\ln(5)$ will input the value $\\log_e(5)$, whereas $\\ln5$ will not work.
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{d}*log({frac})/log({b})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Solve the following equation for $n$
\n$\\displaystyle{\\simplify{{FV}={pay}((1+{int})^n-1)/{int}}}.$
\n\n$n=$ [[0]]
\n
\nNote: Typing $\\log(5)$ will input the value $\\log_{10}(5)$, whereas $\\log5$ will not work.
Note: Typing $\\ln(5)$ will input the value $\\log_e(5)$, whereas $\\ln5$ will not work.
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "log({FV*int+pay}/{pay})/log({1+int})", "answerSimplification": "simplifyFractions", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Solving log equations using exponentials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "functions": {}, "advice": "", "ungrouped_variables": ["power", "d", "f", "g", "b", "a", "c", "ans"], "variable_groups": [{"variables": [], "name": "Unnamed group"}], "preamble": {"css": "", "js": ""}, "tags": ["exp", "exponential", "exponentials", "logarithm", "logarithms", "logs", "solving", "Solving equations", "solving equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "rulesets": {}, "variables": {"d": {"description": "", "definition": "random(2..12)", "templateType": "anything", "name": "d", "group": "Ungrouped variables"}, "power": {"description": "", "definition": "random(-5..5 except 0)", "templateType": "anything", "name": "power", "group": "Ungrouped variables"}, "ans": {"description": "", "definition": "(b^((g-f)/d)-c)/a", "templateType": "anything", "name": "ans", "group": "Ungrouped variables"}, "a": {"description": "", "definition": "random(2..12)", "templateType": "anything", "name": "a", "group": "Ungrouped variables"}, "g": {"description": "", "definition": "f+power*d", "templateType": "anything", "name": "g", "group": "Ungrouped variables"}, "b": {"description": "", "definition": "random(2,3,4,5,10)", "templateType": "anything", "name": "b", "group": "Ungrouped variables"}, "f": {"description": "", "definition": "random(1..60)", "templateType": "anything", "name": "f", "group": "Ungrouped variables"}, "c": {"description": "", "definition": "random(-12..12 except 0)", "templateType": "anything", "name": "c", "group": "Ungrouped variables"}}, "statement": "", "parts": [{"gaps": [{"checkvariablenames": false, "answer": "{({b}^{power}-{c})/{a}}", "marks": 1, "checkingtype": "absdiff", "showpreview": true, "scripts": {}, "checkingaccuracy": 0.001, "variableReplacements": [], "vsetrangepoints": 5, "type": "jme", "answersimplification": "fractionnumbers", "showFeedbackIcon": true, "showCorrectAnswer": true, "expectedvariablenames": [], "vsetrange": [0, 1], "variableReplacementStrategy": "originalfirst"}], "type": "gapfill", "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "stepsPenalty": "1", "steps": [{"type": "information", "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "prompt": "We start solving the equation one operation at a time by doing the inverse to both sides, when we get to undoing the log we recall the definition of $\\log_b$, write the equation in index form and continue solving.
\nRecall: The definition of $\\log_b$ says $\\log_b(a)=c$ is equivalent to $b^c=a$.
\n\n\n\n$\\displaystyle{\\var{d}\\log_\\var{b}(\\simplify{{a}x+{c}})+\\var{f} }$ | \n$=$ | \n$\\var{g}$ | \n | \n
\n\n$\\displaystyle{\\var{d}\\log_\\var{b}(\\simplify{{a}x+{c}}) }$ | \n$=$ | \n$\\var{g-f}$ | \n(subtract $\\var{f}$ from both sides) | \n
\n\n$\\displaystyle{\\log_\\var{b}(\\simplify{{a}x+{c}}) }$ | \n$=$ | \n$\\var{power}$ | \n(divide both sides by $\\var{d}$) | \n
\n\n$\\simplify[basic]{{b}^{power}}$ | \n$=$ | \n$\\simplify{{a}x+{c}}$ | \n(using the definition of $\\log_\\var{b}$) | \n
\n\n$\\simplify[basic,unitpower]{{b}^{power}-{c}}$ | \n$=$ | \n$\\var{a}x$ | \n(subtract $\\var{c}$ from both sides) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\simplify[basic,fractionnumbers,unitpower]{({b}^{power}-{c})/{a}}}$ | \n$=$ | \n$x$ | \n(divide both sides by $\\var{a}$) | \n
\n\n | \n | \n | \n | \n
\n\n$x$ | \n$=$ | \n$\\displaystyle{\\simplify[basic,fractionnumbers,unitpower]{{({b}^{power}-{c})/{a}}}}$ | \n | \n
\n\n
\n", "variableReplacementStrategy": "originalfirst", "scripts": {}, "variableReplacements": []}], "prompt": "Solve the following equation for $x$
\n$\\displaystyle{\\var{d}\\log_\\var{b}(\\simplify{{a}x+{c}})+\\var{f}=\\var{g} }.$
\n\n$x=$ [[0]]
\nNote: You can use the symbol ^ to signify powers, and / to signify division. Please ensure you use brackets correctly.
", "variableReplacementStrategy": "originalfirst", "scripts": {}, "variableReplacements": []}], "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question"}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "extensions": [], "custom_part_types": [], "resources": []}