// Numbas version: finer_feedback_settings {"name": "Factors (Algebraic)", "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", ""], "variable_overrides": [[], []], "questions": [{"name": "Factorisation: finding factors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["algebra", "Algebra", "common factors", "factorisation", "Factorisation", "factorising", "factors", "Factors"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"prime": {"name": "prime", "group": "Ungrouped variables", "definition": "random(2,3,5,7)", "description": "", "templateType": "anything", "can_override": false}, "factor1": {"name": "factor1", "group": "b", "definition": "random(2..144)", "description": "", "templateType": "anything", "can_override": false}, "factor2": {"name": "factor2", "group": "b", "definition": "random('\\$x\\$','\\$x^2\\$','\\$xy\\$','\\$x^2y\\$','\\$xy^2\\$','\\$x^2y^2\\$','\\$(x+1)\\$','\\$(y-1)^3\\$')", "description": "", "templateType": "anything", "can_override": false}, "failsafepowerp1": {"name": "failsafepowerp1", "group": "Ungrouped variables", "definition": "failsafepower+1", "description": "", "templateType": "anything", "can_override": false}, "xconstantpower": {"name": "xconstantpower", "group": "Ungrouped variables", "definition": "random(0..5)", "description": "", "templateType": "anything", "can_override": false}, "primepower": {"name": "primepower", "group": "Ungrouped variables", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}, "xcpowerp1": {"name": "xcpowerp1", "group": "Ungrouped variables", "definition": "xconstantpower+1", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "['\\$1\\$',\n '\\$\\\\var{prime}\\$',\n '\\$\\\\var{prime^2}\\$',\n '\\$\\\\simplify{{p2pp}x^{xpower}y^{ypower}(x+{xconstant})^{xconstantpower}(z+{failconstant})^{failsafepower}} \\$']\n+if(xpower<2 and ypower<2 and xconstantpower<2,\n ['\\$(z+'+failconstant+')^'+failsafepowerm1+'\\$','\\$(z+'+failconstant+')^'+failsafepowerp1+'\\$'],\n if(xconstantpower>1,\n ['\\$\\\\simplify{(x+{xconstant})^{xcpowerm1}}\\$','\\$(x+'+xconstant+')^'+xcpowerp1+'\\$'],['\\$(x+'+xconstant+')^'+xcpowerp1+'\\$'])\n +if(xpower>=1 and ypower>=1 and (xpower>2 or ypower>2),\n ['\\$xy\\$','\\$x^2y^2\\$','\\$x^2y\\$'], ['\\$x\\$','\\$y\\$'])\n +if(primepower>=1 and xconstantpower>=1, \n ['\\$\\\\simplify{{prime} (x+{xconstant})^{xconstantpower}}\\$'],[]))", "description": "
$\\simplify{{prime^primepower}x^{xpower}y^{ypower}(x+{xconstant})^{xconstantpower} (z+{failconstant})^{failsafepower}}$
", "templateType": "anything", "can_override": false}, "ypower": {"name": "ypower", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}, "failsafepowerm1": {"name": "failsafepowerm1", "group": "Ungrouped variables", "definition": "failsafepower-1", "description": "", "templateType": "anything", "can_override": false}, "xcpowerm1": {"name": "xcpowerm1", "group": "Ungrouped variables", "definition": "xconstantpower-1", "description": "", "templateType": "anything", "can_override": false}, "p2pp": {"name": "p2pp", "group": "Ungrouped variables", "definition": "prime^primepower", "description": "", "templateType": "anything", "can_override": false}, "gmarks": {"name": "gmarks", "group": "Ungrouped variables", "definition": "[1,\n if(primepower>=1,1,0),\n if(primepower>=2,1,0),1]+if(xpower<2 and ypower<2 and xconstantpower<2,[1,0],if(xconstantpower>1,[1,0],[0])+if(xpower>=1 and ypower>=1 and (xpower>2 or ypower>2),[1,if(xpower>=2 and ypower>=2,1,0),if(xpower>=2,1,0)],[if(xpower>=1,1,0),if(ypower>=1,1,0)])+if(primepower>=1 and xconstantpower>=1, [1],[]))", "description": "", "templateType": "anything", "can_override": false}, "xconstant": {"name": "xconstant", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "failsafepower": {"name": "failsafepower", "group": "Ungrouped variables", "definition": "if(xpower<2 and ypower<2 and xconstantpower<2,3,0 )", "description": "", "templateType": "anything", "can_override": false}, "failconstant": {"name": "failconstant", "group": "Ungrouped variables", "definition": "random(1..12 except xconstant)", "description": "", "templateType": "anything", "can_override": false}, "xpower": {"name": "xpower", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}, "expanded": {"name": "expanded", "group": "Ungrouped variables", "definition": "expression(\n '1'+'*'+\n join(\n repeat(prime,primepower)\n +repeat(expression('x'),xpower)\n +repeat(expression('y'),ypower)\n , '*')\n +if(xconstantpower>0,\n '*('+join(repeat(expression('(x+{xconstant})'),xconstantpower), ')*(')+')','')\n +if(failsafepower>0,\n '*('+join(repeat(expression('(z+{failconstant})'),failsafepower), ')*(')+')','')\n)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["prime", "primepower", "p2pp", "expanded", "xpower", "ypower", "xconstant", "xconstantpower", "failconstant", "failsafepower", "failsafepowerm1", "failsafepowerp1", "xcpowerm1", "xcpowerp1", "choices", "gmarks"], "variable_groups": [{"name": "b", "variables": ["factor1", "factor2"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which of the following are factors of $\\simplify{{prime^primepower}x^{xpower}y^{ypower}(x+{xconstant})^{xconstantpower} (z+{failconstant})^{failsafepower}}$?
", "stepsPenalty": "10", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Factors are things that multiply to make a product.
\nConsider the product $\\simplify{{prime^primepower}x^{xpower}y^{ypower}(x+{xconstant})^{xconstantpower} (z+{failconstant})^{failsafepower}}$.
\nWe can write this product as
\n$\\simplify[basic, alwaystimes]{{expanded}}$
\nAny combination of the above factors will still be a factor (since we can rearrange the product so that our collection of factors are all together and we can treat that collection as a single factor).
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": "choices", "matrix": "gmarks"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Suppose that $\\var{factor1}${factor2} is a factor of an expression. What can be said of $-\\var{factor1}${factor2}?
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Since $-1$ can divide every number (just like $1$ can), if a positive number is a factor, then so is the negative of it.
\nIn particular, if $\\var{factor1}${factor2} is a factor of an expression, then that expression can be written as a product involving $\\var{factor1}${factor2}, for instance $\\var{factor1}${factor2}$w$ where $w$ is the other factor. Notice then that we can write the expression as $-\\var{factor1}${factor2}$(-w)$, that is, $-\\var{factor1}${factor2} is also a factor.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["It is also a factor.
", "It is not necessarily a factor.
", "It is definitely not a factor.
"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Factorising: Common factor", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["algebra", "common factor", "distributive law", "factor", "factorisation", "Factorisation", "factorising"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"pxcoeff": {"name": "pxcoeff", "group": "part a", "definition": "primes[1]", "description": "", "templateType": "anything", "can_override": false}, "cmult": {"name": "cmult", "group": "part c", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "ct1": {"name": "ct1", "group": "part c", "definition": "cx*cmult", "description": "", "templateType": "anything", "can_override": false}, "ct2": {"name": "ct2", "group": "part c", "definition": "cmult*cy", "description": "", "templateType": "anything", "can_override": false}, "nconstant": {"name": "nconstant", "group": "part b", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "cc": {"name": "cc", "group": "part c", "definition": "-cprimes[2]", "description": "", "templateType": "anything", "can_override": false}, "nxcoeff": {"name": "nxcoeff", "group": "part b", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "ct3": {"name": "ct3", "group": "part c", "definition": "cmult*cc", "description": "", "templateType": "anything", "can_override": false}, "cf": {"name": "cf", "group": "part b", "definition": "-gcd(bp1,bp2)", "description": "", "templateType": "anything", "can_override": false}, "bc": {"name": "bc", "group": "part b", "definition": "bp2/cf", "description": "", "templateType": "anything", "can_override": false}, "pmult": {"name": "pmult", "group": "part a", "definition": "primes[0]", "description": "", "templateType": "anything", "can_override": false}, "bp1": {"name": "bp1", "group": "part b", "definition": "nmult*nxcoeff", "description": "", "templateType": "anything", "can_override": false}, "cy": {"name": "cy", "group": "part c", "definition": "cprimes[1]", "description": "", "templateType": "anything", "can_override": false}, "bp2": {"name": "bp2", "group": "part b", "definition": "nmult*nconstant", "description": "", "templateType": "anything", "can_override": false}, "pconstant": {"name": "pconstant", "group": "part a", "definition": "primes[2]", "description": "", "templateType": "anything", "can_override": false}, "cprimes": {"name": "cprimes", "group": "part c", "definition": "shuffle([2,3,5,7,11])[0..3]", "description": "", "templateType": "anything", "can_override": false}, "cx": {"name": "cx", "group": "part c", "definition": "cprimes[0]", "description": "", "templateType": "anything", "can_override": false}, "bx": {"name": "bx", "group": "part b", "definition": "bp1/cf", "description": "", "templateType": "anything", "can_override": false}, "primes": {"name": "primes", "group": "part a", "definition": "shuffle([2,3,5,7,11])[0..3]", "description": "", "templateType": "anything", "can_override": false}, "nmult": {"name": "nmult", "group": "part b", "definition": "random(-12..-2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "part a", "variables": ["pmult", "pxcoeff", "pconstant", "primes"]}, {"name": "part b", "variables": ["nmult", "nxcoeff", "nconstant", "bp2", "bp1", "cf", "bx", "bc"]}, {"name": "part c", "variables": ["cprimes", "cx", "cy", "cc", "cmult", "ct1", "ct2", "ct3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The expression $\\var{pmult*pxcoeff}x+\\var{pconstant*pmult}$ is a sum and can be factorised (written as a product) by finding the largest common factor:
\n$\\var{pmult*pxcoeff}x+\\var{pconstant*pmult} = $ [[0]] $\\large($ [[1]] $\\large)$
\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "We put the common factor out the front of a set of brackets and put the 'left-overs' inside.
\nThe (largest) common factor of $\\var{pmult*pxcoeff}x+\\var{pconstant*pmult}$ is $\\var{pmult}$.
\nOnce we remove that factor from each term in $\\var{pmult*pxcoeff}x+\\var{pconstant*pmult}$ we are left with $\\var{pxcoeff}x+\\var{pconstant}$.
\nThat means $\\var{pmult*pxcoeff}x+\\var{pconstant*pmult}= \\var{pmult}(\\var{pxcoeff}x+\\var{pconstant})$.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{pmult}", "maxValue": "{pmult}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{pxcoeff}x+{pconstant}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Factorise $\\simplify{{bp1}a+{bp2}}$
\n[[0]] $\\large($ [[1]] $\\large)$
\nNote: Choose the best common factor to minimise the total number of negative signs.
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "We put the common factor out the front of a set of brackets and put the 'left-overs' inside.
\nThe common factor of $\\simplify{{bp1}a+{bp2}}$ that we should pull out is $\\var{cf}$. This is because:
\nOnce we remove that factor from each term in $\\simplify{{bp1}a+{bp2}}$ we are left with $\\var{bx}a+\\var{bc}$.
\nThat means $\\simplify{{bp1}a+{bp2}}$ is $\\var{cf} = \\var{cf}(\\var{bx}a+\\var{bc})$.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cf}", "maxValue": "{cf}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{bx}a+{bc}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "a", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Factorise $\\simplify{{ct1}x+{ct2}y+{ct3}}$
\n[[0]] $\\large($ [[1]] $\\large)$
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "We put the common factor out the front of a set of brackets and put the 'left-overs' inside.
\nThe (largest) common factor of $\\simplify{{ct1}x+{ct2}y+{ct3}}$ is $\\var{cmult}$.
\nOnce we remove that factor from each term in $\\simplify{{ct1}x+{ct2}y+{ct3}}$ we are left with $\\simplify{{cx}x+{cy}y+{cc}}$.
\nThat means $\\simplify{{ct1}x+{ct2}y+{ct3}} = \\simplify{{cmult}({ct1}x+{ct2}y+{ct3})}$.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cmult}", "maxValue": "{cmult}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{cx}x+{cy}y+{cc}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": false, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": false, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "never", "allowrevealanswer": true, "intro": "", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": false}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "extensions": [], "custom_part_types": [], "resources": []}