// Numbas version: finer_feedback_settings {"name": "FIS5047_S2_Numbas", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Semana 2", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "variable_overrides": [[], [], []], "questions": [{"name": "grafico lineal", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Luke Park", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/826/"}, {"name": "Ivan Munoz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18334/"}], "tags": [], "metadata": {"description": "

Una pregunta para practicar las siguientes habilidades en el contexto de las Ciencias de la Tierra:

\n", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

La elevación sobre el nivel del mar de un orógeno se estimó en diferentes puntos en el pasado. Los valores fueron tabulados como se muestra a continuación:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Time from the present (Ma)$-10$$-9$$-8$$-7$$-6$$-5$$-4$$-3$$-2$$-1$
Elevation above sea-level (km){{graphplot}[0]}{{graphplot}[1]}{{graphplot}[2]}{{graphplot}[3]}{{graphplot}[4]}{{graphplot}[5]}{{graphplot}[6]}{{graphplot}[7]}{{graphplot}[8]}\n

{{graphplot}[9]}

\n
\n

Donde Ma son Millones de años

", "advice": "

Haga clic en 'Probar otra pregunta como esta' y repita la pregunta tantas veces como desee hasta que se sienta cómodo con los conceptos y métodos.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"y3": {"name": "y3", "group": "Ungrouped variables", "definition": "graphplot[2]", "description": "", "templateType": "anything", "can_override": false}, "y6": {"name": "y6", "group": "Ungrouped variables", "definition": "graphplot[5]", "description": "", "templateType": "anything", "can_override": false}, "y9": {"name": "y9", "group": "Ungrouped variables", "definition": "graphplot[8]", "description": "", "templateType": "anything", "can_override": false}, "xext": {"name": "xext", "group": "Ungrouped variables", "definition": "random(1..4.5#0.5)", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "graphplot[1]", "description": "", "templateType": "anything", "can_override": false}, "y7": {"name": "y7", "group": "Ungrouped variables", "definition": "graphplot[6]", "description": "", "templateType": "anything", "can_override": false}, "graphplot": {"name": "graphplot", "group": "Ungrouped variables", "definition": "map(m*x+c,x,-10..-1)", "description": "", "templateType": "anything", "can_override": false}, "y5": {"name": "y5", "group": "Ungrouped variables", "definition": "graphplot[4]", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(0.3,0.4,0.5,0.6,0.7,0.8)", "description": "", "templateType": "anything", "can_override": false}, "y8": {"name": "y8", "group": "Ungrouped variables", "definition": "graphplot[7]", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "y1-m*x1", "description": "", "templateType": "anything", "can_override": false}, "y4": {"name": "y4", "group": "Ungrouped variables", "definition": "graphplot[3]", "description": "", "templateType": "anything", "can_override": false}, "ymax": {"name": "ymax", "group": "Ungrouped variables", "definition": "m*5+c", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "-10", "description": "", "templateType": "anything", "can_override": false}, "y10": {"name": "y10", "group": "Ungrouped variables", "definition": "graphplot[9]", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "random(0.5..1.1#0.1)", "description": "", "templateType": "anything", "can_override": false}, "yext": {"name": "yext", "group": "Ungrouped variables", "definition": "m*xext+c", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x1", "y1", "m", "c", "graphplot", "xext", "yext", "ymax", "y2", "y3", "y4", "y5", "y6", "y7", "y8", "y9", "y10"], "variable_groups": [], "functions": {"lngrph": {"parameters": [], "type": "html", "language": "javascript", "definition": "\n var m = Numbas.jme.unwrapValue(scope.variables.m);\n var c = Numbas.jme.unwrapValue(scope.variables.c);\n var y1 = Numbas.jme.unwrapValue(scope.variables.y1);\n\n var ymax = Numbas.jme.unwrapValue(scope.variables.ymax);\n var div = Numbas.extensions.jsxgraph.makeBoard('600px','600px',\n {boundingBox:[-10,ymax,5,-3],\n axis:true,\n showNavigation:true,\n grid:true});\n var brd = div.board;\n var xaxis = brd.create('line',[[0,0],[1,0]], { strokeWidth: 0, fixed: true, withlabel: true, name: function () {return \"Time from the present (Ma)\"}, label: {offset:[110,-20]}});\n var yaxis = brd.create('line',[[0,0],[0,1]], { strokeWidth: 0, fixed: true, withlabel: true, name: function () {return \"Elevation above sea-level (km)\"}, label: {offset:[20,570]} }); \n\n/*\n var xas = brd.create('line',[[0,0],[1,0]], { strokeColor: 'black',fixed:true});\n var xticks = brd.create('ticks',[xas,2],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n });\n var yas = brd.create('line',[[0,0],[0,1]], { strokeColor: 'black',fixed:true});\n var yticks = brd.create('ticks',[yas,2],{\n drawLabels: true,\n label: {offset: [-20, 0]},\n minorTicks: 0\n });\n\n*/\n\n\n // var li1=brd.create('line',[[0,b],[1,a+b]],{fixed:true});\n // var p1=brd.create('point',[0,c],{fixed:true,size:1,name:''});\n // brd.create('text', [0.25, c, function(){ return '(' + p1.X()+','+p1.Y()+')'; }],{fontsize:15,isLabel:true});\n // var p2=brd.create('point',[-1,c-m],{fixed:true,size:1,name:''});\n // brd.create('text', [-0.75, c-m, function(){ return '(' + p2.X()+','+p2.Y()+')'; }],{fontsize:15,isLabel:true});\n // var point = brd.create('point',[-10,y1],{fixed:true,size:1,name:'',color:'brown'})\n\n var tree;\n //x is the variable in the equation to be input\n var nscope = new Numbas.jme.Scope([scope,{variables:{t:new Numbas.jme.types.TNum(0)}}]);\n //create a functiongraph from the student input\n var curve = brd.create('functiongraph', [function(t){\n if(tree) {\n try {\n nscope.variables.t.value = t;\n //the user input is evaluated at x=t\n var val = Numbas.jme.evaluate(tree,nscope).value;\n return val;\n }\n catch(e) {\n return 0;\n }\n }\n else\n return 0;\n },-10,10],{strokeColor:'black',strokeWidth:1.5});\n //pick up the student answer and is parsed\n question.signals.on('HTMLAttached',function(e) {\n ko.computed(function(){\n var expr = question.parts[2].gaps[0].display.studentAnswer();\n try {\n tree = Numbas.jme.compile(expr,scope);\n }\n catch(e) {\n tree = null;\n }\n curve.updateCurve();\n brd.update();\n });\n }); \n\n/*\n\n// DRAGPOINT CODE\n \n\nfunction dragpoint_board() {\n \n var scope = question.scope;\n var m = scope.variables.m.value;\n var ymax = scope.variables.ymax.value;\n var c = scope.variables.c.value;\n \n var div = Numbas.extensions.jsxgraph.makeBoard('600px','600px',{boundingBox:[-11,ymax,5,-3],grid:true});\n $(question.display.html).find('#dragpoint').append(div);\n \n var board = div.board;\n \n //shorthand to evaluate a mathematical expression to a number\n function evaluate(expression) {\n try {\n var vale = Numbas.jme.evaluate(expression,question.scope);\n return Numbas.jme.unwrapValue(vale);\n }\n catch(e) {\n // if there's an error, return no number\n return NaN;\n }\n }\n \n // set up points array\n var num_points = 10;\n var points = [];\n \n // this function sets up the i^th point\n function make_point(i) {\n \n // calculate initial coordinates\n var p = i-10;\n \n // create an invisible vertical line for the point to slide along\n var line = board.create('line',[[p,0],[p,1]],{visible: false});\n \n // create the point\n var point = points[i] = board.create(\n 'glider',\n [i-1,0,line],\n {\n name:'',\n size:2,\n snapSizeY: 0.1, // the point will snap to y-coordinates which are multiples of 0.1\n snapToGrid: true\n }\n );\n \n // the contents of the input box for this point\n var studentAnswer = question.parts[1].gaps[i].display.studentAnswer;\n \n/* // watch the student's input and reposition the point when it changes. \n ko.computed(function() {\n y = evaluate(studentAnswer());\n if(!(isNaN(y)) && board.mode!=board.BOARD_MODE_DRAG) {\n point.moveTo([x,y],100);\n }\n });\n \n\n \n // when the student drags the point, update the gapfill input\n point.on('drag',function(){\n var y = Numbas.math.niceNumber(point.Y());\n studentAnswer(y);\n });\n }\n\n // create each point\n for(var i=0;iUsando los puntos de datos tabulados arriba, trace el gráfico de la elevación del nivel del mar contra el tiempo, calcule la tasa de 'crecimiento' (pendiente) de orógeno.

\n

$m=\\;$[[0]] km por Ma.

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "m*0.95", "maxValue": "m*1.05", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": true}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

La altura actual del orógeno estudiado se ha omitido del conjunto de datos. Usando los valores proporcionados, calcule la altura del orógeno hoy:

\n

[[0]] km

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c*0.9", "maxValue": "c*1.1", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Usando los puntos de datos tabulados y las respuestas a la Parte a) y la Parte b), escriba la ecuación lineal que relaciona el tiempo $t$ (Ma) y la elevación del orógeno $h$ (km).

\n

$h=\\;$[[0]]

\n

\n

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [{"variable": "m", "part": "p0g0", "must_go_first": true}, {"variable": "c", "part": "p1g0", "must_go_first": true}], "variableReplacementStrategy": "alwaysreplace", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{m}*t+{c}", "answerSimplification": "!basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "t", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Suponiendo que la tasa de crecimiento orogénico permanece constante, use la Parte c) para hacer una predicción de la elevación en $\\var{xext}$ millones de años desde el presente:

\n

[[0]] km

\n

Dé su respuesta correcta con dos cifras significativas.

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-{m}*{xext}+{c}", "maxValue": "-{m}*{xext}+{c}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "

You have not given your answer to the correct precision.

", "strictPrecision": true, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Ecuacion de la recta", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ivan Munoz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18334/"}], "tags": [], "metadata": {"description": "

Find the equation from the image of graph

", "licence": "None specified"}, "statement": "

Puede ampliar y desplazar esta imagen

\n

{app}


", "advice": "

Para encontrar el gradiente

\n

En primer lugar, dibuje un 'paso' en ángulo recto de izquierda a derecha. Este triángulo puede estar en cualquier lugar, pero es más útil que tenga esquinas en los vértices (puntos de números enteros) del gráfico y es más fácil de calcular con números positivos.

\n

{app_advice}

\n

Antes de comenzar a calcular, observe que la línea es {uod}, por lo que el gradiente será {pon} y la línea es {sos}, por lo que el valor absoluto del número será {mol}.

Ahora encuentra las coordenadas de los lugares donde tu triángulo se encuentra con la línea.

\n

$(x_1,y_1)=(\\var{ax},\\var{ay})$ and $(x_2,y_2)=(\\var{bx},\\var{by})$

\n

Necesitamos comparar el 'aumento en el eje y' con el 'recorrer el eje x', podemos decir que:

\n

$\\text{gradient} = \\frac{\\text{rise}}{\\text{run}}$

\n

Esto es equivalente a usar la fórmula:

$  m = \\frac{y_2 - y_1}{x_2 - x_1} $

\n

y sustituimos las coordenadas de los vértices del triángulo:

$\\begin{split} &\\, m = \\frac{\\var{by} - \\var{ay}}{\\var{bx} - \\var{ax}} \\\\  
&\\, = \\frac{\\var{by-ay}}{\\var{bx-ax}} \\\\ 
&\\,  = \\var[fractionNumbers]{m} \\\\
\\end{split} $

\n

\n

Para completar la ecuación

\n

Puedes leer la intersección del gráfico (si es obvio dónde la línea corta el eje y) o puedes calcularla.

\n

Sabemos que hay gradiente, por lo que podemos escribir $y=\\var{m}x+c$ y reorganizar para darnos:

\n

$c = \\simplify[all]{y - {m}x}$

Luego sustituya el valor de $x$ y $y$ desde cualquier punto de la línea, usemos $(\\var{ax},\\var{ay})$ para dar

\n

$c = \\var{ay} \\simplify[all]{- {m}} \\times \\var{ax}$

\n

$c = \\var{c}$

\n

Entonces la ecuación final es

\n

$y = \\simplify[collectNumbers, zeroterm,unitfactor]{{m}x +{c}}$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"app": {"name": "app", "group": "Ungrouped variables", "definition": "geogebra_applet(\n 800,500,\n [\n A: [\n definition: p1,\n label_visible: false,\n visible: false\n ],\n B: [\n definition: p2,\n label_visible: false,\n visible: false \n ],\n line: [\n definition: \"Line(A,B)\",\n label_visible: false\n ]\n ]\n)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "(ay-by)/(ax-bx)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "ay-m*ax", "description": "", "templateType": "anything", "can_override": false}, "P1": {"name": "P1", "group": "Ungrouped variables", "definition": "vector(ax, ay)", "description": "", "templateType": "anything", "can_override": false}, "P2": {"name": "P2", "group": "Ungrouped variables", "definition": "vector(bx,by)", "description": "", "templateType": "anything", "can_override": false}, "uod": {"name": "uod", "group": "Ungrouped variables", "definition": "if(m=0,'horizontal',if(m=abs(m),'going up','going down'))", "description": "

if(m=abs(m),'positive','negative')

", "templateType": "anything", "can_override": false}, "ax": {"name": "ax", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}, "ay": {"name": "ay", "group": "Ungrouped variables", "definition": "random(0,1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "bx": {"name": "bx", "group": "Ungrouped variables", "definition": "random(ax+1..3) \n", "description": "", "templateType": "anything", "can_override": false}, "by": {"name": "by", "group": "Ungrouped variables", "definition": "random(0..4 except ay)\n", "description": "", "templateType": "anything", "can_override": false}, "app_advice": {"name": "app_advice", "group": "Ungrouped variables", "definition": "geogebra_applet(\n 800,500,\n [\n A: [\n definition: p1,\n label_visible: false,\n visible: true\n ],\n B: [\n definition: p2,\n label_visible: false,\n visible: true \n ],\n \n C: [\n definition: p3,\n label_visible: false,\n visible: false \n ],\n \n line1: [\n definition: \"Line(A,B)\",\n label_visible: false,\n visible: true\n ],\n \n line2: [\n definition: \"Segment(A,C)\",\n label_visible: false,\n visible: true\n ],\n \n \n \n line3: [\n definition: \"Segment(C,B)\",\n label_visible: false,\n visible: true\n ]\n ]\n)", "description": "", "templateType": "anything", "can_override": false}, "p3": {"name": "p3", "group": "Ungrouped variables", "definition": "vector(bx,ay)", "description": "", "templateType": "anything", "can_override": false}, "pon": {"name": "pon", "group": "Ungrouped variables", "definition": "if(m=0,'zero',if(m=abs(m),'a positive number','a negative number'))", "description": "", "templateType": "anything", "can_override": false}, "sos": {"name": "sos", "group": "Ungrouped variables", "definition": "if(m=0,'horizontal',if(abs(m)<1,'shallow','steep'))", "description": "", "templateType": "anything", "can_override": false}, "mol": {"name": "mol", "group": "Ungrouped variables", "definition": "if(m=0,'zero',if(abs(m)<1,'less than 1','greater than or equal to 1'))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["app", "m", "c", "P1", "P2", "uod", "ax", "ay", "bx", "by", "app_advice", "p3", "pon", "sos", "mol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Encuentra la ecuación de la recta.

", "answer": "y = {m}x + {c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Ecuaci\u00f3n Lineal", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}, {"name": "Ivan Munoz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18334/"}], "tags": [], "metadata": {"description": "

A los estudiantes se les da un problema verbal con la distancia recorrida y el tiempo que tarda un ciclista. Deben elegir la forma correcta para la ecuación lineal, calcular el gradiente y trazar la línea.

\n

La distancia recorrida y el tiempo empleado son aleatorios.

\n

La velocidad, la distancia y el tiempo son valores enteros.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Un ciclista pedalea a velocidad constante por la autopista Nullabor. {gender} viaja {km} kilómetros en {hours} horas.

", "advice": "

\n

Su gráfico debe verse similar a este {geogebra_applet('https://www.geogebra.org/m/wxv4ykqj',defs)}

\n

Su gráfico necesita:

\n

para comenzar en (0,0).
para mostrar la línea.
para contener el punto $(\\var{hours},\\var{km})$
etiquetas y flechas en ambos ejes. En este gráfico, el eje horizontal está etiquetado como $x$. Sin embargo, deberías haber etiquetado el tuyo como $t$ o $tiempo (hours)$. En este gráfico, el eje vertical está etiquetado como $y$. Sin embargo, debería haber etiquetado el suyo como $d$ o $distancia (km)$.
una escala en cada eje.

\n

Es posible que haya elegido diferentes escalas para sus ejes. Esto esta bien.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"gender": {"name": "gender", "group": "Ungrouped variables", "definition": "random(\"He\",\"She\")", "description": "", "templateType": "anything", "can_override": false}, "hours": {"name": "hours", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "speed": {"name": "speed", "group": "Ungrouped variables", "definition": "random(15..40)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "speed", "description": "

gradient

", "templateType": "anything", "can_override": false}, "km": {"name": "km", "group": "Ungrouped variables", "definition": "speed * hours", "description": "", "templateType": "anything", "can_override": false}, "xmax": {"name": "xmax", "group": "Ungrouped variables", "definition": "hours*1.5", "description": "", "templateType": "anything", "can_override": false}, "ymax": {"name": "ymax", "group": "Ungrouped variables", "definition": "hours*1.5*m", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "0", "description": "

y-intercept

", "templateType": "anything", "can_override": false}, "defs": {"name": "defs", "group": "Ungrouped variables", "definition": "[\n ['a',m],['b',b],['xmin',0],['xmax',xmax],['ymin',0],['ymax',ymax]\n ]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["gender", "hours", "speed", "m", "km", "xmax", "ymax", "b", "defs"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Sea $d$ la distancia recorrida en km.

\n

Sea $t$ el tiempo empleado en horas.

\n

Sea $s$ la velocidad del ciclista.

"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Utilizando el analisis dimensional. ¿Cuál de las siguientes ecuaciones se puede usar para representar los viajes del ciclista?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$d=st$", "$t=sd$", "$s=dt$", "$s = t + d$"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calcula el valor de $s$ para esta ecuación.

", "minValue": "m", "maxValue": "m", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Construye una tabla de valores para la ecuación y grafica.

"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Ivan Munoz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18334/"}], "extensions": ["geogebra", "jsxgraph"], "custom_part_types": [], "resources": []}