// Numbas version: finer_feedback_settings {"name": "Financial Maths STAT6011 ", "duration": 0, "metadata": {"description": "
Financial Mathematics
\n", "licence": "Creative Commons Attribution 4.0 International"}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 0, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "feedback": {"showtotalmark": true, "advicethreshold": 0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "AER", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "A savings account earns compound interest at 1.5% per month.
Calculate the equivalent annual rate of interest
A savings account earns compound interest at a rate of $\\var{perc}$% per quarter.
Calculate the Annual Percentage Rate (APR).
$\\ APR = (1+i)^n-1 $
", "advice": "The quarterly interest rate is $\\var{perc}$% per quarter. There are 4 quarters in one year so the equivalent annual rate of interest can be calculated as follows:
\n$APR=(1+\\frac{\\var{perc}}{100})^{4}-1=\\var{apr2}-1=\\var{apr}$
\nTherefore the APR is $\\var{perc2}$%
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(1.4..2.5#0.1)", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc/100", "description": "", "templateType": "anything", "can_override": false}, "perc2": {"name": "perc2", "group": "Ungrouped variables", "definition": "precround(apr*100,2)", "description": "", "templateType": "anything", "can_override": false}, "apr": {"name": "apr", "group": "Ungrouped variables", "definition": "precround(apr2-1,4)", "description": "", "templateType": "anything", "can_override": false}, "apr2": {"name": "apr2", "group": "Ungrouped variables", "definition": "precround((1+int)^4,4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["perc", "apr2", "int", "perc2", "apr"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Please give your answer as a percentage correct to two decimal places.
\n[[0]]%
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "Write your answer as a percentage.
", "useAlternativeFeedback": false, "minValue": "apr", "maxValue": "apr", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "perc2-0.05", "maxValue": "perc2+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "APR", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "A credit card company charges compound interest at x% per month
on unpaid balances.
A credit card company charges compound interest at a rate of $\\var{perc}$% per month on unpaid balances.
\n\n$\\ APR = (1+i)^n-1 $
", "advice": "The monthly interest rate is $\\var{perc}$% per month. There are 12 months in one year so the APR can be calculated as follows:
\n\n$APR=(1+\\frac{\\var{perc}}{100})^{12}-1=\\var{apr2}-1=\\var{apr}$
\nTherefore the APR is $\\var{perc2}$%
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(0.8..1.6#0.1)", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc/100", "description": "", "templateType": "anything", "can_override": false}, "perc2": {"name": "perc2", "group": "Ungrouped variables", "definition": "precround(apr*100,2)", "description": "", "templateType": "anything", "can_override": false}, "apr": {"name": "apr", "group": "Ungrouped variables", "definition": "precround(apr2-1,4)", "description": "", "templateType": "anything", "can_override": false}, "apr2": {"name": "apr2", "group": "Ungrouped variables", "definition": "precround((1+int)^12,4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["perc", "apr2", "int", "perc2", "apr"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the Annual Percentage Rate (APR) for this credit card. Please give your answer as a percentage correct to two decimal places.
\n[[0]]%
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "Write your answer as a percentage.
", "useAlternativeFeedback": true, "minValue": "apr", "maxValue": "apr", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "perc2-0.05", "maxValue": "perc2+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Catherine's copy of CT1 - Interest Rates - Question 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "An investor puts €$\\var{A0}$ in a banks saving account with a fixed interest rate earning compound interest. In return they receive €$\\var{A}$ in $\\var{n}$ years time.
\n\nThe compound interest formula is:
\n$\\ A = P(1+i)^n $
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"A": {"name": "A", "group": "Ungrouped variables", "definition": "random(115000 .. 125000#100)", "description": "", "templateType": "randrange", "can_override": false}, "A0": {"name": "A0", "group": "Ungrouped variables", "definition": "random(100000 .. 111000#100)", "description": "", "templateType": "randrange", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(4 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["A", "A0", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the annual interest rate.
\nPlease give your answer as a percentage correct to 3 decimal places.
\n[[0]]%
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "Write your answer as a percentage.
", "useAlternativeFeedback": false, "minValue": "(({A}/{A0})^(1/{n}) - 1)-0.005", "maxValue": "(({A}/{A0})^(1/{n}) - 1)+0.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": "0", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "100*(({A}/{A0})^(1/{n}) - 1)-0.005", "maxValue": "100*(({A}/{A0})^(1/{n}) - 1)+0.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": "0", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Future Value - Annuity 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "To provide for retirement an employee deposits R at the end of each month in an account that earns $perc% annual interest compound monthly. What is the future value of the annuity in nyears?
", "licence": "None specified"}, "statement": "To provide for retirement an employee deposits €$\\var{R}$ at the end of each month into an account that earns $\\var{perc}$% annual interest compounded monthly.
", "advice": "The future value of an annuity, $A$ is given by:
\n\n$A=\\frac{R[(1+i)^n-1]}{i}$
\nwhere $R$ represents the periodic payment, $i$ represents the interest rate per period and $n$ represents the number of payments.
\n\n$A$ represents the future value of the annuity, this is what we are asked to calculate.
\n$i$ represents the rate of compound interest. the annual interest rate is $\\var{perc}$% so the monthly rate of interest is $\\frac {\\var{perc}} {12}=\\var{perc2}$% and therefore $i=\\frac{\\var{perc2}}{100}=\\var{int}$.
\n$n$ represents the number of payments, there are 12 payments over $\\var{years}$ year(s) so $n$ is $12 \\times \\var{years}=\\var{n}$.
\nThe value of each repayment, is €$\\var{R}$
\n\nUsing the formula:
\n$A=\\frac{R[(1+i)^n-1]}{i}$
\n$A=\\frac{\\var{R}[(1+\\var{int})^{\\var{n}}-1]}{\\var{int}}$
\n$A=\\frac{\\var{R}[\\var{num}-1]}{\\var{int}}$
\n$A=\\frac{\\var{R}[\\var{num2}]}{\\var{int}}$
\n$A = \\var{R} \\times \\var{num3}$
\n$A=\\var{A}$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(4..9#0.5)", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "precround(R*num3,2)", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Ungrouped variables", "definition": "num-1", "description": "", "templateType": "anything", "can_override": false}, "num3": {"name": "num3", "group": "Ungrouped variables", "definition": "num2/int", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc2/100", "description": "", "templateType": "anything", "can_override": false}, "years": {"name": "years", "group": "Ungrouped variables", "definition": "random(5..10)", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "(1+int)^n", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "years*12", "description": "", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "Ungrouped variables", "definition": "random(50..100#10)", "description": "", "templateType": "anything", "can_override": false}, "perc2": {"name": "perc2", "group": "Ungrouped variables", "definition": "perc/12", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["R", "perc", "perc2", "int", "num", "years", "n", "num2", "num3", "A"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which formula should we use to calculate the future value of the annuity in $\\var{years}$ years?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\displaystyle A=R \\left [\\frac{(1+i)^n-1}{i} \\right]$", "$\\displaystyle P=R \\left[ \\frac{1-(1+i)^{-n}}{i} \\right]$", "$\\displaystyle P=R(1+i)\\left[ \\frac{1-(1+i)^{-n}}{i} \\right]$", "$\\displaystyle A=R(1+i)\\left[\\frac{(1+i)^n-1}{i}\\right]$"], "matrix": ["1", 0, 0, "0.5"], "distractors": ["", "This answer is incorrect because the question asks for the future value of the annuity (A). ", "This answer is incorrect because the question asks for the future value of the annuity (A). ", "This answer is incorrect because the periodic payments are deposited at the end of each compounding period."]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the future value of the annuity in $\\var{years}$ years?
\n\n€[[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The future value of an annuity, $A$ is given by:
\n\n$A=R\\left[\\frac{(1+i)^n-1}{i}\\right]$
\nwhere $R$ represents the periodic payment, $i$ represents the interest rate per period and $n$ represents the number of payments.
\n"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "A-1", "maxValue": "A+1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Future value - Annuity 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "A pharmaceutical company wishes to accumulate €$\\var{A}$ to upgrade its manufacturing plant in $3$ years time.
", "licence": "None specified"}, "statement": "A pharmaceutical company wishes to accumulate €$\\var{A}$ to upgrade its manufacturing plant. The upgrade is due to be paid for on December 31st 2017 so the company makes three equal deposits into a savings account earning compound interest at a rate of $\\var{perc}$% per annum. The payments are made on 31st December 2015, 31st December 2016 and 31st December 2017.
\n\n", "advice": "Since the payments are made at the end of the year, the formula for calculating the future value ($A$) of an annuity is given by:
\n$A=\\frac{R[(1+i)^{n}-1]}{i}$
\nwhere $R$ represents the periodic payment, $i$ represents the interest rate per period and $n$ represents the number of payments.
\n\nPart (a)
\n$A$ represents the future value of the annuity, this is the amount to be saved, therefore $A=€\\var{A}$
\nPart (b)
\n$i$ represents the rate of compound interest, the annual interest rate is $\\var{perc}$% so $i$ is $\\frac {\\var{perc}} {100}=\\var{int}$.
\nPart(c)
\n$n$ represents the number of payments , so $n$ is $\\var{n}$.
\nPart (d)
\nThe value of each repayment, €$R$ can be calculated using the future value formula or it can be calculated directly by calculating the amount of interest that each deposit earns.Using the formula:
\n$A=\\frac{R[(1+i)^{n}-1]}{i}$
\n$\\var{A}=\\frac{R[(1+\\var{int})^{\\var{n}}-1]}{\\var{int}}$
\n$\\var{A}=\\frac{R[\\var{num}-1]}{\\var{int}}$
\n$\\var{A}=\\frac{R[\\var{num2}]}{\\var{int}}$
\n$\\var{A} = R \\times \\var{num3}$
\n$\\frac{\\var{A}}{\\var{num3}}=R$
\n$\\var{R}=R$
\n\nAlternatively, we can calculate $R$ directly:
\nThe amount to be saved is €$\\var{A}$ so $A=\\var{A}$. The interest rate per annum is $\\var{int}$ and there are $n$ repayments so $n=\\var{n}$.
\nThe future value of the deposit made on 31st December 2015 is: $R \\times (1+\\var{int})^2$
The future value of the deposit made on 31st December 2016 is: $R\\times(1+\\var{int})$
Thevalue of the deposit made on 31st December 2016 is: $R$
Thus the future value is given by:
\n$A=R\\times(1+\\var{int})^2$+$R\\times(1+\\var{int})$+$R$
\n$\\var{A}=R\\times(1+\\var{int})^2$+$R\\times(1+\\var{int})$+$R$
\n$\\var{A}=R[(1+\\var{int})^2$+$(1+\\var{int})+1$
\n$\\var{A}=R[\\var{frac2}+\\var{frac1}+1]$
\n$\\var{A} = R \\times \\var{num4}$
\n$\\frac{\\var{A}}{\\var{num4}}=R$
\n$\\var{R}=R$
\n\nPart (e)
\nThe amount of interest paid is the difference between the amount accumulated ($A$) and the three deposits of €$\\var{R}$
\nInterest = $\\var{A}- 3 \\times \\var{R}=\\var{Interest}$
\n\n\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(2.5..6.5#0.5)", "description": "", "templateType": "anything", "can_override": false}, "num4": {"name": "num4", "group": "Ungrouped variables", "definition": "frac1+frac2+1", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Ungrouped variables", "definition": "num-1", "description": "", "templateType": "anything", "can_override": false}, "num3": {"name": "num3", "group": "Ungrouped variables", "definition": "num2/int", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc/100", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "3", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "(1+int)^n", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "random(250000..1000000#50000)", "description": "", "templateType": "anything", "can_override": false}, "Interest": {"name": "Interest", "group": "Ungrouped variables", "definition": "A-3*R", "description": "", "templateType": "anything", "can_override": false}, "frac2": {"name": "frac2", "group": "Ungrouped variables", "definition": "(1+int)^2", "description": "", "templateType": "anything", "can_override": false}, "frac1": {"name": "frac1", "group": "Ungrouped variables", "definition": "(1+int)", "description": "", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "Ungrouped variables", "definition": "precround(A/num3,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["perc", "int", "n", "R", "Interest", "num", "num2", "num3", "frac1", "frac2", "num4", "A"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which formula should we use to calculate how large each deposit should be?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\displaystyle A=R\\left[\\frac{(1+i)^n-1}{i}\\right]$", "$\\displaystyle P=R \\left[\\frac{1-(1+i)^{-n}}{i}\\right]$", "$\\displaystyle P=R(1+i)\\left[ \\frac{1-(1+i)^{-n}}{i} \\right]$", "$\\displaystyle A=R(1+i)\\left[\\frac{(1+i)^n-1}{i}\\right]$"], "matrix": ["1", "0", 0, "0.5"], "distractors": ["", "This answer is incorrect because the question tells us the future value of the annuity (A). ", "This answer is incorrect because the question tells us the future value of the annuity (A).", "This answer is incorrect because the periodic payments are deposited at the end of each compounding period."]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $A$?
\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "A-0.01", "maxValue": "A+0.01", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $i$?
\n[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "int-0.0001", "maxValue": "int+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $n$?
\n[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "3-0.0001", "maxValue": "3+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate how large each deposit will need to be.
\nPlease give your answer to the nearest cent.
\n€[[0]]
Since the payments are made at the end of the year, the formula for calculating the future value ($A$) of an annuity is:
\n$A=R\\left[\\frac{(1+i)^{n}-1}{i}\\right]$
\nwhere $R$ represents the value of the regular deposit, $i$ represents the interest rate and $n$ represents the number of payments.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "R-1", "maxValue": "R+1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the total amount of interest that the company will earn over the three years.
\nPlease give your answer to the nearest cent.
\n€[[0]]
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Interest-1", "maxValue": "Interest+1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Loan - compound interest 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}], "functions": {}, "ungrouped_variables": ["debt", "interest", "capital", "n"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "The principal, $P$, is the €[[0]] lent to the individual.
\nThe final amount, $A$, is the €[[1]] paid back.
\nSince the individual has paid back €[[2]] more that s\\he borrowed, this is the interest.
", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "{capital}", "minValue": "{capital}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "{interest}", "minValue": "{interest}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "{debt}", "minValue": "{debt}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "A bank lends an individual £$\\var{capital}$. The individual has to pay back the bank £$\\var{interest}$ in $\\var{n}$ years time.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"n": {"definition": "random(2..5 #1)", "templateType": "anything", "group": "Ungrouped variables", "name": "n", "description": ""}, "debt": {"definition": "random(200..500#20)", "templateType": "randrange", "group": "Ungrouped variables", "name": "debt", "description": ""}, "interest": {"definition": "capital + debt", "templateType": "anything", "group": "Ungrouped variables", "name": "interest", "description": ""}, "capital": {"definition": "random(500..2000#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "capital", "description": ""}}, "metadata": {"notes": "", "description": "", "licence": "None specified"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Loan compound interest 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "Compare two loans with different interest rates.
", "licence": "None specified"}, "statement": "Two rival high street banks offer customers a new loan.
\nBank A offers a loan at a rate of $\\var{perc1}$% per annum where interest is compounded annually.
\nBank B offers a loan at a rate of $\\var{perc2}$% per annum where interest is compounded monthly.
\nSuppose that a potential customer wishes to borrow €$\\var{P}$ for $\\var{n1}$ years.
\nThe compound interest formula is:
\n$\\ A = P(1+i)^n $
\n", "advice": "
The compound interest formula is: $\\ A = P(1+i)^n $
\nPart (a)
\nn represents the number of compounding periods , so for Bank A it is $\\var{n1}$ years.
\ni represents the rate of compound interest, for Bank A, the annual interest rate is $\\var{perc1}$% so i is $\\frac {\\var{perc1}} {100}=\\var{int1}$.
\nThe amount owed to Bank A after $\\var{n1}$ years is denoted by A. Using the compound interest formula:
\n$A=P(1+i)^n$
\n$A=\\var{P} \\times(1+\\var{int1})^\\var{n1}=\\var{A1}$
\nThe amount of interest accumulated over the $\\var{n1}$ years is the difference between the amount borrowed ($P$) and the amount payed back ($A$).
\n$A-P=\\var{A1}-\\var{P}=\\var{I1}$
\n\n
Part(b)
\nn represents the number of compounding periods. For Bank B interest is compounded monthly for $\\var{n1}$ years so there are a total of $12 \\times \\var{n1} =\\var{n2}$ compounding periods.
\ni represents the rate of compound interest. For Bank B, the interest rate is ${\\var{perc2}}$% per annum compounded monthly.
\nThe interest rate per month is $\\frac{\\var{perc2}}{12}=\\var{int3}$%
\nTherefore $i=\\frac{\\var{int3}}{100}=\\var{int2}$
\nThe amount owed to Bank A after $\\var{n1}$ years is denoted by A. Using the compound interest formula:
\n$A=P(1+i)^n$
\n$A=\\var{P} \\times(1+\\var{int2})^\\var{n2}=\\var{A2}$
\nThe amount of interest accumulated over the $\\var{n1}$ years is the difference between the amount borrowed ($P$) and the amount payed back ($A$).
\n$A-P=\\var{A2}-\\var{P}=\\var{I2}$
\n\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"I1": {"name": "I1", "group": "Ungrouped variables", "definition": "A1-P", "description": "", "templateType": "anything", "can_override": false}, "I2": {"name": "I2", "group": "Ungrouped variables", "definition": "A2-P", "description": "", "templateType": "anything", "can_override": false}, "A1": {"name": "A1", "group": "Ungrouped variables", "definition": "precround(P*(1+int1)^n1,2)", "description": "", "templateType": "anything", "can_override": false}, "P": {"name": "P", "group": "Ungrouped variables", "definition": "random(2000..5000#100)", "description": "", "templateType": "anything", "can_override": false}, "A2": {"name": "A2", "group": "Ungrouped variables", "definition": "precround(P*(1+int2)^n2,2)", "description": "", "templateType": "anything", "can_override": false}, "int1": {"name": "int1", "group": "Ungrouped variables", "definition": "perc1/100", "description": "", "templateType": "anything", "can_override": false}, "int3": {"name": "int3", "group": "Ungrouped variables", "definition": "perc2/12", "description": "", "templateType": "anything", "can_override": false}, "int2": {"name": "int2", "group": "Ungrouped variables", "definition": "perc2/1200", "description": "", "templateType": "anything", "can_override": false}, "perc1": {"name": "perc1", "group": "Ungrouped variables", "definition": "random(4.5..5#0.1)", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..4#1)", "description": "", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "n1*12", "description": "", "templateType": "anything", "can_override": false}, "perc2": {"name": "perc2", "group": "Ungrouped variables", "definition": "random(4.4..4.8#0.1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["perc1", "perc2", "int1", "int2", "n1", "n2", "P", "A1", "A2", "I1", "I2", "int3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Suppose that the potential customer chooses Bank A.
\nWhat is the value of $n$?
\n[[0]]
\nWhat is the value of $i$ as a decimal?
\n[[1]]
\nAt the end of the $\\var{n1}$ years, how much must the customer pay to Bank A to clear the loan?
\nPlease give your answer to the nearest cent.
\n€[[2]]
\nHow much interest does the loan accumulate during the $\\var{n1}$ years?
\nPlease give your answer to the nearest cent.
\n€[[3]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n1-0.00001", "maxValue": "n1+0.00001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "int1-0.0001", "maxValue": "int1+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "A1-0.05", "maxValue": "A1+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "I1-0.05", "maxValue": "I1+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Suppose that the potential customer chooses Bank B.
\nWhat is the value of $n$?
\n[[0]]
\nWhat is the value of $i$? Please include all the decimal places in your answer.
\n[[1]]
\n\nAt the end of the $\\var{n1}$ years, how much must the customer pay to Bank B to clear the loan?
\nPlease give your answer to the nearest cent.
\n€[[2]]
\nHow much interest does the loan accumulate during the $\\var{n1}$ years?
\nPlease give your answer to the nearest cent.
\n€[[3]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n2-0.00001", "maxValue": "n2+0.00001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "int2-0.00005", "maxValue": "int2+0.00005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "A2-0.05", "maxValue": "A2+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "I2-0.05", "maxValue": "I2+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Net Present Value", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "An investment of €x invested today will give a return of €y in n years time Calculate the net present value (NPV) of the investment given that the discount rate is 3.5% per annum.
", "licence": "None specified"}, "statement": "An investment will give a return of €$\\var{Return1}$ in $\\var{n1}$ years time.
\n\nThe formula for calculating the present value of an investment is:
$P=\\frac{A}{(1+i)^n}$
", "advice": "We wish to calculate the present value of an investment that will be worth €$\\var{Return1}$ in $\\var{n1}$ years time. Using the present value formula:
\n$P=\\frac{A}{(1+i)^{n}}$
\nwhere $A$ is €$\\var{Return1}$, $n$ is $\\var{n1}$ and $i$ is $\\frac{\\var{perc}}{100}=\\var{int}$ gives:
\n$P=\\frac{\\var{Return1}}{(1+\\var{int})^{\\var{n1}}}$
\n$P=\\frac{\\var{Return1}}{\\var{num}}$
\n$P=\\var{NPV}$
\n\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(2..7#0.5)", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc/100", "description": "", "templateType": "anything", "can_override": false}, "Invest": {"name": "Invest", "group": "Ungrouped variables", "definition": "random(50000..150000#20000)", "description": "", "templateType": "anything", "can_override": false}, "Return1": {"name": "Return1", "group": "Ungrouped variables", "definition": "siground(Invest*(1+int+0.01)^n1,4)", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "(1+int)^n1", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(3..5#1)", "description": "", "templateType": "anything", "can_override": false}, "NPV": {"name": "NPV", "group": "Ungrouped variables", "definition": "precround(Return1/(1+int)^n1,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Invest", "Return1", "perc", "int", "NPV", "n1", "num"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the present value of the investment given that the discount rate is $\\var{perc}$% per annum. Round your answer to the nearest cent.
\n\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "NPV-0.1", "maxValue": "NPV+0.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Net Present Value 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "An investment of x invested today will give a return of €y in n1 years time and a further €z n2 years from today. Calculate the net present value (NPV) of the investment given that the discount rate is perc% per annum.
", "licence": "None specified"}, "statement": "An investment of €$\\var{Invest}$ invested today will give a return of €$\\var{Return1}$ in $\\var{n1}$ years' time and a further return of €$\\var{Return2}$ in $\\var{n2}$ years' time. The discount rate is $\\var{perc}$% per annum.
\nThe formula for calculating the present value of an investment is:
$P=\\frac{A}{(1+i)^n}$
\n\nRound each answer to 2 decimal places.
", "advice": "We wish to calculate the net present value (NPV) of an investment that will be worth €$\\var{Return1}$ in $\\var{n1}$ years time plus an additional €$\\var{Return2}$ in $\\var{n2}$ years time. Using the present value formula, the present value of the €$\\var{Return1}$ is:
\n$P=\\frac{A}{(1+i)^{n}}$
\nwhere $A$ is €$\\var{Return1}$, $n$ is $\\var{n1}$ and $i$ is $\\frac{\\var{perc}}{100}=\\var{int}$
\n$P1=\\frac{\\var{Return1}}{(1+\\var{int})^{\\var{n1}}}$
\n$P1=\\frac{\\var{Return1}}{\\var{num}}$
\n$P1=\\var{PV1}$
\n\nUsing the present value formula, the present value of the €$\\var{Return2}$ is:
\n$P=\\frac{A}{(1+i)^{n}}$
\nwhere $A$ is €$\\var{Return2}$, $n$ is $\\var{n2}$ and $i$ is $\\frac{\\var{perc}}{100}=\\var{int}$
\n$P2=\\frac{\\var{Return2}}{(1+\\var{int})^{\\var{n2}}}$
\n$P2=\\frac{\\var{Return2}}{\\var{num}}$
\n$P2=\\var{PV2}$
\nThe NPV of the total amount is $P1+P2 - Investment =\\var{PV1}+\\var{PV2}-\\var{Invest}=€\\var{NPV}$
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(2..6#0.5)", "description": "", "templateType": "anything", "can_override": false}, "PV1": {"name": "PV1", "group": "Ungrouped variables", "definition": "precround(Return1/(1+int)^n1,2)", "description": "", "templateType": "anything", "can_override": false}, "PV2": {"name": "PV2", "group": "Ungrouped variables", "definition": "precround(Return2/(1+int)^n2,2)", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Ungrouped variables", "definition": "(1+int)^n2", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc/100", "description": "", "templateType": "anything", "can_override": false}, "Invest": {"name": "Invest", "group": "Ungrouped variables", "definition": "siground(Return1/(1+int+0.01)^n1, 3)+siground(Return2/(1+int+0.01)^n2, 3)", "description": "", "templateType": "anything", "can_override": false}, "Return2": {"name": "Return2", "group": "Ungrouped variables", "definition": "random(40000..70000#5000)", "description": "", "templateType": "anything", "can_override": false}, "Return1": {"name": "Return1", "group": "Ungrouped variables", "definition": "random(20000..30000#5000)", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "(1+int)^n1", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..4#1)", "description": "", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "n1+3", "description": "", "templateType": "anything", "can_override": false}, "NPV": {"name": "NPV", "group": "Ungrouped variables", "definition": "PV1+PV2-Invest", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Invest", "Return1", "perc", "int", "PV1", "n1", "num", "Return2", "n2", "PV2", "NPV", "num2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
The present value of a return of €$\\var{Return1}$ in $\\var{n1}$ years time is:
\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "PV1-0.05", "maxValue": "PV1+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The present value of a return of €$\\var{Return2}$ in $\\var{n2}$ years time is:
\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "PV2-0.05", "maxValue": "PV2+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the net present value (NPV) of the investment.
\n\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "NPV-0.1", "maxValue": "NPV+0.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Present value - Annuity 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "The loan must be repaid to the bank in three equal repayments
Calculate:
(i) how large each repayment will need to be
(ii) the total amount of interest that the company will pay to the bank over the four years.
On January 1, 2015 a company borrowed €$\\var{P}$ from a bank at $\\var{perc}$% per annum compound interest. The loan must be repaid to the bank in three equal repayments, due on December 31 in 2015, 2016 and 2017.
\n\n", "advice": "The present value of an annuity, $P$ is given by:
\n\n$P=\\frac{R[1-(1+i)^{-n}]}{i}$
\nwhere $R$ represents the periodic payment, $i$ represents the interest rate per period and $n$ represents the number of payments.
\n\nPart (a)
\n$P$ represents the present value of the annuity, this is the amount borrowed, therefore $P=€\\var{P}$
\nPart (b)
\n$i$ represents the rate of compound interest, the annual interest rate is $\\var{perc}$% so $i$ is $\\frac {\\var{perc}} {100}=\\var{int}$.
\nPart(c)
\n$n$ represents the number of payments , so $n$ is $\\var{n}$.
\nPart (d)
\nThe value of each repayment, €$R$ can be calculated using the present value formula or it can be calculated directly by discounting each payment according to how far into the future it lies.
\nUsing the formula:
\n$P=\\frac{R[1-(1+i)^{-n}]}{i}$
\n$\\var{P}=\\frac{R[1-(1+\\var{int})^{-\\var{n}}]}{\\var{int}}$
\n$\\var{P}=\\frac{R[1-\\var{num}]}{\\var{int}}$
\n$\\var{P}=\\frac{R[\\var{num2}]}{\\var{int}}$
\n$\\var{P} = R \\times \\var{num3}$
\n$\\frac{\\var{P}}{\\var{num3}}=R$
\n$\\var{R}=R$
\n\nAlternatively, we can calculate $R$ directly:
\nThe principle borrowed from the bank is €$\\var{P}$ so $P=\\var{P}$. The interest rate per annum is $\\var{int}$ and there are $n$ repayments so $n=\\var{n}$.
\nThe present value of the first repayment is: $\\frac{R}{(1+\\var{int})}$
The present value of the second repayment is: $\\frac{R}{(1+\\var{int})^2}$
The present value of the third repayment is: $\\frac{R}{(1+\\var{int})^3}$
Thus the present value is given by:
\n$P=\\frac{R}{(1+\\var{int})}$+$\\frac{R}{(1+\\var{int})^2}$+$\\frac{R}{(1+\\var{int})^3}$
\n$\\var{P}=\\frac{R}{(1+\\var{int})}$+$\\frac{R}{(1+\\var{int})^2}$+$\\frac{R}{(1+\\var{int})^3}$
\n$\\var{P}=R[\\frac{1}{(1+\\var{int})}$+$\\frac{1}{(1+\\var{int})^2}$+$\\frac{1}{(1+\\var{int})^3}]$
\n$\\var{P}=R[\\var{frac1}+\\var{frac2}+\\var{frac3}]$
\n$\\var{P} = R \\times \\var{num4}$
\n$\\frac{\\var{P}}{\\var{num4}}=R$
\n$\\var{R}=R$
\n\nPart (e)
\nThe amount of interest paid is the difference between the amount borrowed ($P$) and the amount paid back (three payments of €$\\var{R}$)
\nInterest = $ 3 \\times \\var{R} - \\var{P}=\\var{Interest}$
\n\n\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(2.5..6.5#0.5)", "description": "", "templateType": "anything", "can_override": false}, "num4": {"name": "num4", "group": "Ungrouped variables", "definition": "frac1+frac2+frac3", "description": "", "templateType": "anything", "can_override": false}, "frac3": {"name": "frac3", "group": "Ungrouped variables", "definition": "1/(1+int)^3", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Ungrouped variables", "definition": "1-num", "description": "", "templateType": "anything", "can_override": false}, "num3": {"name": "num3", "group": "Ungrouped variables", "definition": "num2/int", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc/100", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "3", "description": "", "templateType": "anything", "can_override": false}, "P": {"name": "P", "group": "Ungrouped variables", "definition": "random(50000..500000#50000)", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "(1+int)^-n", "description": "", "templateType": "anything", "can_override": false}, "frac1": {"name": "frac1", "group": "Ungrouped variables", "definition": "1/(1+int)", "description": "", "templateType": "anything", "can_override": false}, "Interest": {"name": "Interest", "group": "Ungrouped variables", "definition": "3*R-P", "description": "", "templateType": "anything", "can_override": false}, "frac2": {"name": "frac2", "group": "Ungrouped variables", "definition": "1/(1+int)^2", "description": "", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "Ungrouped variables", "definition": "precround(P/((1-(1+int)^-n)/int),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["perc", "int", "P", "n", "R", "Interest", "num", "num2", "num3", "frac1", "frac2", "frac3", "num4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which formula should we use to calculate how large each repayment will need to be?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\displaystyle A=R\\left[\\frac{(1+i)^n-1}{i}\\right]$", "$\\displaystyle P=R \\left[\\frac{1-(1+i)^{-n}}{i}\\right]$", "$\\displaystyle P=R(1+i)\\left[ \\frac{1-(1+i)^{-n}}{i} \\right]$", "$\\displaystyle A=R(1+i)\\left[\\frac{(1+i)^n-1}{i}\\right]$"], "matrix": [0, "1", "0.5", 0], "distractors": ["This answer is incorrect because the question provides the present value of the annuity (P).", "", "This answer is incorrect because the periodic payments are repaid at the end of each compounding period.", "This answer is incorrect because the question provides the present value of the annuity (P)."]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $P$?
\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "P-0.01", "maxValue": "P+0.01", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $i$?
\n[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "int-0.0001", "maxValue": "int+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $n$?
\n[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "3-0.0001", "maxValue": "3+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate how large each repayment will need to be.
\nPlease give your answer to the nearest cent.
\n€[[0]]
The formula for calculating the present value ($P$) of an annuity is:
\n$P=R\\left[\\frac{1-(1+i)^{-n}}{i}\\right]$
\nwhere $R$ represents the value of each repayment, $i$ represents the interest rate and $n$ represents the number of repayments.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "R-1", "maxValue": "R+1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the total amount of interest that the company will pay to the bank over the three years.
\nPlease give your answer to the nearest cent.
\n€[[0]]
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Interest-1", "maxValue": "Interest+1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Present value - Annuity 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "A 1-year lease for a company car requires a payment of €280 at the end of each month. Find the present value of these payments if the annual interest rate is 7% compounded monthly.
", "licence": "None specified"}, "statement": "A $\\var{years}$-year lease for a company car requires a payment of €$\\var{R}$ at the end of each month.
\n", "advice": "The present value of an annuity, $P$ is given by:
\n\n$P=\\frac{R[1-(1+i)^{-n}]}{i}$
\nwhere $R$ represents the periodic payment, $i$ represents the interest rate per period and $n$ represents the number of payments.
\n\n$P$ represents the present value of the annuity, this is what we are asked to calculate.
\n$i$ represents the rate of compound interest. the annual interest rate is $\\var{perc}$% so the monthly rate of interest is $\\frac {\\var{perc}} {12}=\\var{perc2}$% and therefore $i=\\frac{\\var{perc2}}{100}=\\var{int}$.
\n$n$ represents the number of payments, there are 12 payments over $\\var{years}$ year(s) so $n$ is $12 \\times \\var{years}=\\var{n}$.
\nThe value of each repayment, is €$\\var{R}$
\n\nUsing the formula:
\n$P=\\frac{R[1-(1+i)^{-n}]}{i}$
\n$P=\\frac{\\var{R}[1-(1+\\var{int})^{-\\var{n}}]}{\\var{int}}$
\n$P=\\frac{\\var{R}[1-\\var{num}]}{\\var{int}}$
\n$P=\\frac{\\var{R}[\\var{num2}]}{\\var{int}}$
\n$P = \\var{R} \\times \\var{num3}$
\n$P=\\var{P}$
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(4.5..8.5#0.5)", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Ungrouped variables", "definition": "1-num", "description": "", "templateType": "anything", "can_override": false}, "num3": {"name": "num3", "group": "Ungrouped variables", "definition": "num2/int", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc2/100", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "years*12", "description": "", "templateType": "anything", "can_override": false}, "P": {"name": "P", "group": "Ungrouped variables", "definition": "precround(R*((1-(1+int)^(-n))/int),2)", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "(1+int)^-n", "description": "", "templateType": "anything", "can_override": false}, "Interest": {"name": "Interest", "group": "Ungrouped variables", "definition": "n*R-P", "description": "", "templateType": "anything", "can_override": false}, "years": {"name": "years", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "Ungrouped variables", "definition": "random(280..400 # 10)", "description": "", "templateType": "anything", "can_override": false}, "perc2": {"name": "perc2", "group": "Ungrouped variables", "definition": "precround(perc/12, 5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["perc", "int", "P", "n", "R", "Interest", "num", "perc2", "num2", "num3", "years"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\nWhich formula should we use to calculate the present value of these payments?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\displaystyle A=R \\left[\\frac{(1+i)^n-1}{i}\\right]$", "$\\displaystyle P=R\\left[\\frac{1-(1+i)^{-n}}{i}\\right]$", "$\\displaystyle P=R(1+i)\\left[ \\frac{1-(1+i)^{-n}}{i} \\right]$", "$\\displaystyle A=R(1+i)\\left[\\frac{(1+i)^n-1}{i}\\right]$"], "matrix": [0, "1", "0.5", 0], "distractors": ["This answer is incorrect because the question asks us to calculate the present value of the annuity (P).", "", "This answer is incorrect because the periodic payments are repaid at the end of each compounding period.", "This answer is incorrect because the question asks us to calculate the present value of the annuity (P)."]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the present value of these payments if the annual interest rate is $\\var{perc}$% compounded monthly.
\n€[[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The formula for calculating the present value ($P$) of an annuity is:
\n$P=R\\left[\\frac{1-(1+i)^{-n}}{i}\\right]$
\nwhere $R$ represents the value of each repayment, $i$ represents the interest rate and $n$ represents the number repayments.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "P-1", "maxValue": "P+1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Present value 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "Find the present value of an amount where interest is compounded annually
", "licence": "None specified"}, "statement": "The formula for calculating the present value of an investment is:
\n$P=\\frac{A}{(1+i)^n}$
\n\n$\\var{n}$ years from today, on his twenty-first birthday, Sean MacLeinn will receive a gift of €$\\var{A}$ from his great-aunt Priscilla. The annual rate of interest is $\\var{perc}$%.
", "advice": "The present value formula is: $ P = \\frac{A}{(1+i)^n} $
\nPart (a)
\nA represents the principal sum invested , so in this example it is €$\\var{A}$.
\nPart (b)
\ni represents the rate of compound interest, in this example, the annual interest rate is $\\var{perc}$% so i is $\\frac {\\var{perc}} {100}=\\var{int}$.
\nPart (c)
\nn represents the number of compounding periods , so in this example it is $\\var{n}$ years.
\nPart(d)
\nUsing the present value formula:
\n$ P = \\frac{A}{(1+i)^n} $
\n$ P = \\frac{\\var{A}}{(1+\\var{int})^\\var{n}} $
\n$ P = €\\var{P}$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(2..8#0.5)", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "random(2000..5000#100)", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc/100", "description": "", "templateType": "anything", "can_override": false}, "P": {"name": "P", "group": "Ungrouped variables", "definition": "precround(A/(1+int)^n,2)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..8#1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "perc", "A", "int", "P"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $A$?
\n€[[0]]
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "A-0.001", "maxValue": "A+0.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $i$ written as a decimal?
\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "int-0.001", "maxValue": "int+0.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $n$?
\n[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n-0.001", "maxValue": "n+0.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the present value of this gift? Please give your answer to the nearest cent.
\n\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "P-0.05", "maxValue": "P+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Present value 2 ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": ["amount due", "compound interest", "compounded daily", "daily", "daily compound interest", "finance", "interest", "invested", "investment", "money", "present value", "rate of interest"], "metadata": {"description": "Interest rate does not match compounding period.
\nFind much money should be invested at $r$% per annum so that after $y$ years the amount will be £$A$, interest compounded daily.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "A sum of money is be invested with a nominal interest rate of $\\var{r}$% compounded daily so that after $\\var{yrs}$ years the amount will have grown to €$\\var{amt}$. You may assume that there are 365 days per annum.
\n\nThe formula for calculating the present value of an investment is:
$P=\\frac{A}{(1+i)^n}$
\n", "advice": "Part(a)
\nInterest is compounded daily for $\\var{yrs}$ years so there are a total of $365 \\times \\var{yrs} =\\var{n}$ compounding periods.
\nPart(b)
\nIt is important to remember that the interest rate must match the compounding period.
\nThe interest rate given in the question is ${\\var{r}}$% per annum.
\nThe interest rate per day is $\\frac{\\var{r}}{365}=\\var{r/365}$%
\nTherefore $i=\\frac{\\var{r/365}}{100}=\\var{int}$
\nPart(c)
\nWe want to find the present value of the amount $A=\\var{amt}$ due at the end of $n=\\var{yrs}\\times 365 = \\var{365*yrs}$ interest periods (days).
\nHence the present value i.e. the amount to be invested is:
\\[ \\begin{eqnarray*} P&=&\\frac{A}{(1+i)^n}\\\\ \\\\ &=& \\frac{\\var{amt}}{(1+\\var{int})^{\\var{n}}}\\\\ \\\\ &=&\\var{p} \\end{eqnarray*} \\]
What is the value of $n$?
\n[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n-0.0001", "maxValue": "n+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of $i$?
\n[[0]]
\nPlease give your answer to 8 decimal places.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "int-0.00000001", "maxValue": "int+0.00000001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of the sum of money initially invested?
\n€[[0]]
\nPlease give your answer to two decimal places.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "(p-tol)-0.05", "maxValue": "(p+tol)+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Savings compound interest 1 ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "Calculate the final amount in a savings account where compound interest is earned annually
", "licence": "None specified"}, "statement": "A lump sum of €$\\var{P}$ is deposited into a savings account, that pays compound interest at a rate of $\\var{perc}$% per annum for $\\var{n}$ years. If no withdrawals are made from the account, then the amount that the lump sum will have grown to is given by the formula:
\n\n$\\ A = P(1+i)^n $
", "advice": "The compound interest formula is: $\\ A = P(1+i)^n $
\nPart (a)
\nP represents the principal sum invested , so in this example it is €$\\var{P}$.
\nPart (b)
\ni represents the rate of compound interest, in this example, the annual interest rate is $\\var{perc}$% so i is $\\frac {\\var{perc}} {100}=\\var{int}$.
\nPart (c)
\nn represents the number of compounding periods , so in this example it is $\\var{n}$ years.
\nPart(d)
\nThe amount in the deposit account after $\\var{n}$ years is denoted by A. Using the compound interest formula:
\n$A=P(1+i)^n$
\n$A=\\var{P} \\times(1+\\var{int})^\\var{n}=\\var{A}$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(1..4.5 # 0.5)", "description": "", "templateType": "anything", "can_override": false}, "P": {"name": "P", "group": "Ungrouped variables", "definition": "random(500..10000 # 500)", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc/100", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "precround(P*(1+int)^n,2)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..7 # 1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["P", "perc", "n", "int", "A"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of P?
\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "P-0.0001", "maxValue": "P+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of i written as a decimal?
\n\n[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "int-0.000001", "maxValue": "int+0.000001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of n?
\n[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n-0.0001", "maxValue": "n+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "How much will be in the deposit account after $\\var{n}$ years? Please give your answer to the nearest cent.
\n€[[0]]
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "A-0.05", "maxValue": "A+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Savings compound interest 2 ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "Calculate the annual interest rate for a savings account where A, P and n are given.
", "licence": "None specified"}, "statement": "A lump sum of €$\\var{P}$ is deposited into a savings account that compounds interest annually for $\\var{n}$ years. If no withdrawals are made from the account, then the amount that the lump sum will have grown to is €$\\var{A}$.
\n\nThe compound interest formula is:
\n$\\ A = P(1+i)^n $
", "advice": "The compound interest formula is: $\\ A = P(1+i)^n $
\nPart (a)
\nP represents the principal sum invested , so in this example it is €$\\var{P}$.
\nPart (b)
\nA represents the amount in the deposit account after $\\var{n}$ years, so in this example it is €$\\var{A}$.
\nPart (c)
\nn represents the number of compounding periods , so in this example it is $\\var{n}$ years.
\nPart(d)
\nUsing the compound interest formula:
\n$A=P(1+i)^n$
\n$\\var{A}=\\var{P}(1+i)^\\var{n}$
\nWe need to rearrange the equation to find the value of $i$.
\n$\\frac{\\var{A}}{\\var{P}}=(1+i)^\\var{n}$
\n$\\var{ratio}=(1+i)^\\var{n}$
\n$\\sqrt[\\var{n}]{\\var{ratio}}=1+i$
\n$\\var{intplus}=1+i$
\n$i=\\var{int}$ so the annual interest rate is $\\var{perc}$%.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"A": {"name": "A", "group": "Ungrouped variables", "definition": "precround(P*(1+int)^n,2)", "description": "", "templateType": "anything", "can_override": false}, "perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(1.5..5.5 #0.5)", "description": "", "templateType": "anything", "can_override": false}, "ratio": {"name": "ratio", "group": "Ungrouped variables", "definition": "A/P", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "perc/100", "description": "", "templateType": "anything", "can_override": false}, "intplus": {"name": "intplus", "group": "Ungrouped variables", "definition": "ratio^(1/n)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6 #1)", "description": "", "templateType": "anything", "can_override": false}, "P": {"name": "P", "group": "Ungrouped variables", "definition": "random(1000..6000 #500)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "P", "A", "perc", "int", "ratio", "intplus"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of P?
\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "P-0.0001", "maxValue": "P+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of A?
\n€[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "A-0.0001", "maxValue": "A+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the value of n?
\n\n
[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n-0.0001", "maxValue": "n+0.0001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the interest rate per annum?
\nPlease give your answer as a percentage correct to two decimal places.
\n\n[[0]]%
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "Write your answer as a percentage.
", "useAlternativeFeedback": false, "minValue": "int", "maxValue": "int", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "perc-0.05", "maxValue": "perc+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Savings compound interest 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}], "functions": {}, "ungrouped_variables": ["perc1", "perc2", "int1", "int2", "n1", "n2", "P", "A1", "A2", "int3"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "The compound interest formula is: $\\ A = P(1+i)^n $
\nPart (a)
\nn represents the number of compounding periods , so for Bank A it is $\\var{n1}$ years.
\ni represents the rate of compound interest, for Bank A, the annual interest rate is $\\var{perc1}$% so i is $\\frac {\\var{perc1}} {100}=\\var{int1}$.
\nThe total amount saved after $\\var{n1}$ years is denoted by A. Using the compound interest formula:
\n$A=P(1+i)^n$
\n$A=\\var{P} \\times(1+\\var{int1})^\\var{n1}=\\var{A1}$
\nPart(b)
\nn represents the number of compounding periods. For Bank B, interest is compounded daily for $\\var{n1}$ years so there are a total of $365 \\times \\var{n1} =\\var{n2}$ compounding periods.
\ni represents the rate of compound interest. For Bank B, the interest rate is ${\\var{perc2}}$% per annum compounded monthly.
\nThe interest rate per month is $\\frac{\\var{perc2}}{12}=\\var{int3}$%
\nTherefore $i=\\frac{\\var{int3}}{100}=\\var{int2}$
\nThe amount saved after $\\var{n1}$ years is denoted by A. Using the compound interest formula:
\n$A=P(1+i)^n$
\n$A=\\var{P} \\times(1+\\var{int2})^\\var{n2}=\\var{A2}$
", "rulesets": {}, "parts": [{"prompt": "Suppose that the potential customer chooses Bank A.
\nWhat is the value of $n$?
\n[[0]]
\nWhat is the value of $i$?
\n[[1]]
\nWhat is the value of $A$? Please give your answer to the nearest cent.
\n€[[2]]
", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "n1+0.00001", "minValue": "n1-0.00001", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "int1+0.0001", "minValue": "int1-0.0001", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "A1+0.01", "minValue": "A1-0.01", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "Suppose that the potential customer chooses Bank B.
\nWhat is the value of $n$?
\n[[0]]
\nWhat is the value of $i$? Please include all the decimal places in your answer.
\n[[1]]
\n\nWhat is the value of $A$? Please give your answer to the nearest cent.
\n€[[2]]
\n", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "n2+0.00001", "minValue": "n2-0.00001", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "int2+0.00001", "minValue": "int2-0.00001", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "A2+0.05", "minValue": "A2-0.05", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "Two rival high street banks offer customers a new deposit account.
\nBank A offers an account that earns interest at a rate of $\\var{perc1}$% per annum where interest is compounded annually.
\nBank B offers an account that earns interest at a rate of $\\var{perc2}$% per annum where interest is compounded daily.
\nSuppose that a potential customer has €$\\var{P}$ to invest for $\\var{n1}$ years.
\nThe compound interest formula is:
\n$\\ A = P(1+i)^n $
\n\nYou may assume that there are 365 days per annum.
\n", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"A1": {"definition": "precround(P*(1+int1)^n1,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "A1", "description": ""}, "P": {"definition": "random(2000..5000#100)", "templateType": "anything", "group": "Ungrouped variables", "name": "P", "description": ""}, "A2": {"definition": "precround(P*(1+int2)^n2,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "A2", "description": ""}, "int1": {"definition": "perc1/100", "templateType": "anything", "group": "Ungrouped variables", "name": "int1", "description": ""}, "int3": {"definition": "perc2/365", "templateType": "anything", "group": "Ungrouped variables", "name": "int3", "description": ""}, "int2": {"definition": "perc2/36500", "templateType": "anything", "group": "Ungrouped variables", "name": "int2", "description": ""}, "perc1": {"definition": "random(5.2..6#0.1)", "templateType": "anything", "group": "Ungrouped variables", "name": "perc1", "description": ""}, "n1": {"definition": "random(2..4#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "n1", "description": ""}, "n2": {"definition": "n1*365", "templateType": "anything", "group": "Ungrouped variables", "name": "n2", "description": ""}, "perc2": {"definition": "random(5.0..5.8#0.1)", "templateType": "anything", "group": "Ungrouped variables", "name": "perc2", "description": ""}}, "metadata": {"notes": "", "description": "
Compare two savings accounts with different interest rates.
", "licence": "None specified"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "extensions": [], "custom_part_types": [], "resources": []}