// Numbas version: exam_results_page_options {"name": "Laplace Transforms", "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], []], "questions": [{"name": "Laplace of constants and powers of t", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d"], "tags": ["rebelmaths"], "advice": "

See 'show steps'.

", "rulesets": {}, "parts": [{"stepsPenalty": 0, "variableReplacements": [], "prompt": "

Find $L\\{\\var{a} \\}$.

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

$L\\{k\\}=\\frac{k}{s}$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 1, "scripts": {}, "answer": "{a}/s", "showCorrectAnswer": true, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"stepsPenalty": 0, "variableReplacements": [], "prompt": "

Find $L\\{\\var{b}t \\}$.

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

$L\\{t\\}=\\frac{1}{s^2}$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 1, "scripts": {}, "answer": "{b}/s^2", "showCorrectAnswer": true, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"stepsPenalty": 0, "variableReplacements": [], "prompt": "

Find $L\\{\\var{a}+\\var{b}t \\}$.

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

$L\\{k\\}=\\frac{k}{s}$

\n

$L\\{t\\}=\\frac{1}{s^2}$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 1, "scripts": {}, "answer": "{a}/s+{b}/s^2", "showCorrectAnswer": true, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"stepsPenalty": 0, "variableReplacements": [], "prompt": "

Find $L\\{t^\\var{a}\\}$.

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

$L\\{t^n\\}=\\frac{n!}{s^{n+1}}$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 1, "scripts": {}, "answer": "fact({a})/s^{a+1}", "showCorrectAnswer": true, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"stepsPenalty": 0, "variableReplacements": [], "prompt": "

Find $L\\{\\var{a}t^\\var{c}+\\var{b}t^\\var{d}\\}$.

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

$L\\{t^n\\}=\\frac{n!}{s^{n+1}}$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 1, "scripts": {}, "answer": "({a}*(fact({c})))/s^{c+1}+({b}*(fact({d})))/s^{d+1}", "showCorrectAnswer": true, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "statement": "

You may use a table of Laplace transforms in order to answer the following questions.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(1..9#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..5#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..9#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(6..9#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "d", "description": ""}}, "metadata": {"description": "

Laplace of constants and powers of t

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Ugur's copy of Laplace transform #3 - powers of t by exp", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

What is the Laplace transform for the function:

\n

\\(x(t)=\\var{a}t^{\\var{n}}e^{-\\var{k}t}+\\var{b}.\\)

\n

", "advice": "

By linearity of Laplace Transform we have

\n

\\[X(s) = \\mathcal L\\left\\{\\var{a}t^{\\var{n}}e^{-\\var{k}t}+\\var{b}\\right\\} = \\var{a} \\mathcal L\\left\\{t^{\\var{n}}e^{-\\var{k}t}\\right\\}+\\mathcal L\\left\\{\\var{b}\\right\\}.\\]

\n

Then apply First Shift Theorem to $\\mathcal L\\left\\{t^{\\var{n}}e^{-\\var{k}t}\\right\\}$, and use trasmform table for $\\mathcal L\\left\\{\\var{b}\\right\\}$ to get the answer.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 11#1)", "description": "", "templateType": "randrange", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(2 .. 12#0.5)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "k", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\(X(s)=\\) [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "fact({n})*{a}/(s+{k})^{n+1}+{b}/s", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "s", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ugur's copy of Laplace transform #1 - powers of t and exp", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

What is the Laplace transform for the function:

\n

\\(x(t)=\\var{a}t^{\\var{n}}+\\var{b}e^{-\\var{k}t}.\\)

\n

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"k": {"name": "k", "group": "Ungrouped variables", "definition": "random(2 .. 12#0.5)", "description": "", "templateType": "randrange", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 11#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "k", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\(X(s)=\\) [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "fact({n})*{a}/s^{n+1}+{b}/(s+{k})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "s", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ugur's copy of Laplace transform #2 - Trig functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

What is the Laplace transform for the function:

\n

\\(x(t)=\\var{a}\\sin({\\var{n}t})+\\var{b}\\cos({\\var{k}t}).\\)

\n

", "advice": "

By the linearity of Laplace Transform:

\n

\\[X(s)=\\mathcal L\\{\\var{a}\\sin({\\var{n}t})+\\var{b}\\cos({\\var{k}t})\\} = \\var{a}\\mathcal L\\{\\sin({\\var{n}t})\\}+\\var{b}\\mathcal L\\{\\cos({\\var{k}t})\\}.\\]

\n

From Laplace Transform table one can read 

\n

\\[\\mathcal L\\{\\sin({\\var{n}t})\\} = \\frac{\\var{n}}{s^2 + \\var{n}^2} \\quad \\mbox{ and } \\quad \\mathcal L\\{\\cos({\\var{n}t})\\} = \\frac{s}{s^2 + \\var{k}^2}.\\] 

\n

Hence 

\n

\\[X(s)=\\mathcal L\\{\\var{a}\\sin({\\var{n}t})+\\var{b}\\cos({\\var{k}t})\\} = \\var{a}\\mathcal L\\{\\sin({\\var{n}t})\\}+\\var{b}\\mathcal L\\{\\cos({\\var{k}t})\\} = \\frac{\\simplify{{a}*{n}}}{s^2 + \\simplify{{n}^2}} + \\frac{\\var{b}s}{s^2 + \\simplify{{k}^2}}.\\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(2 .. 12#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 11#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "k", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\(X(s)=\\) [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n}*{a}/(s^2+{n}^2)+{b}s/(s^2+{k}^2)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "s", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ugur's copy of Year 3 Find the Laplace transfrom of ode", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Solve the differential equation 

\n

\\[\\frac{d^2q}{dt^2}+\\var{a}\\frac{dq}{dt}+\\var{b}q(t)=\\var{c}e^{-\\var{d}t}\\quad    \\mbox{where}   \\quad q(0)=\\var{f}\\quad \\mbox{and}  \\quad q'(0)=\\var{g}\\] 

\n

using Laplace Transform method.

\n

", "advice": "

a) We are given the ODE

\n

\\[\\frac{d^2q}{dt^2}+\\var{a}\\frac{dq}{dt}+\\var{b}q(t)=\\var{c}e^{-\\var{d}t}\\quad    \\mbox{where}   \\quad q(0)=\\var{f}\\quad \\mbox{and}  \\quad q'(0)=\\var{g}.\\]

\n

\n

Using Laplace Transform Table and teh rule for Laplace Transform of derivatives we transfor the ODE into: 

\n

\\[s^2Q(s)-sq(0)-q'(0)+\\var{a}(s(Q(s)-q(0))+\\var{b}Q(s)=\\frac{\\var{c}}{s+\\var{d}}.\\]

\n

\n

Pluging in initial values we get :

\n

\\[s^2Q(s)-\\var{f}s-\\var{g}+\\var{a}sQ(s)-\\simplify{{a}*{f}}+\\var{b}Q(s)=\\frac{\\var{c}}{s+\\var{d}}.\\]

\n

\n

Re-arrange to get:

\n

\\[s^2Q(s)+\\var{a}sQ(s)+\\var{b}Q(s)=\\frac{\\var{c}}{s+\\var{d}}+\\var{f}s+\\simplify{{g}+{a}*{f}}.\\]

\n

\n

Take out  $Q(s)$ as a common factor on the left-hand side:

\n

\\[(s^2+\\var{a}s+\\var{b})Q(s)=\\frac{\\var{c}+(\\var{f}s+\\simplify{{g}+{a}*{f}})(s+\\var{d})}{s+\\var{d}}.\\]

\n

\n

Make $Q(s)$ the subject:

\n

\\[Q(s)=\\frac{\\simplify{{f}s^2+({a}*{f}+{g}+{d}*{f})s+(({g}+{f}*{a})*{d}+{c})}}{(s+\\var{d})(s^2+\\var{a}s+\\var{b})}.\\]

\n

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(3 .. 8#1)", "description": "", "templateType": "randrange", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(10 .. 25#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(3 .. 12#1)", "description": "", "templateType": "randrange", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(3 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "f", "g"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the Laplace transform of the following differential equation and express it \\(Q(s)\\) as a single fraction:

\n

\\(\\frac{d^2q}{dt^2}+\\var{a}\\frac{dq}{dt}+\\var{b}q(t)=\\var{c}e^{-\\var{d}t}\\)    where   \\(q(0)=\\var{f}\\) and  \\(q'(0)=\\var{g}\\)

\n

\n

\\(Q(s)=\\) [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({f}s^2+({f}*{a}+{g}+{d}*{f})s+(({g}+{a}*{f})*{d}+{c}))/((s+{d})(s^2+{a}s}+{b}))", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "s", "value": ""}]}], "sortAnswers": false}, {"type": "information", "useCustomName": true, "customName": "Part b)", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

OPTIONAL (This could be tricky!):

\n

Find the inverse transform of $Q(s)$.

"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ugur's copy of Laplace: Inverse Laplace Completing the Square", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Clare Lundon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/492/"}, {"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

\n

Determine the inverse Laplace Transform of the following using completion of the square.

\n

\n

\n

\\(F(s)=\\dfrac{\\var{B}s+\\var{C}}{s^2+\\simplify{{b1}*2}s+\\var{c1}}\\)

\n

\n

", "advice": "

We have

\n

\\(F(s)=\\frac{\\var{B}s+\\var{C}}{s^2+\\simplify{{b1}*2}s+\\var{c1}}\\).

\n

By completing the square (on the denominator) we get:

\n

\\(F(s)=\\frac{\\var{B}s+\\var{C}}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}}\\).

\n

Re-grouping the numerator gives:

\n

\\(F(s)=\\frac{\\var{B}(s+\\var{b1})-\\simplify{{B}*{b1}-{C}}}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}} = \\frac{\\var{B}(s+\\var{b1})}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}} - \\frac{\\simplify{{B}*{b1}-{C}}}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}} = \\frac{\\var{B}(s+\\var{b1})}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}}  - \\frac{\\simplify{{B}*{b1}-{C}}}{\\sqrt{\\simplify{{c1}-{b1}^2}}}\\cdot\\frac{\\sqrt{\\simplify{{c1}-{b1}^2}}}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}} \\)

\n

Now, the expression above is easy enough to hunt from Laplace Transform table:

\n

\\(f(t)=\\var{B}e^{-\\var{b1}t}\\cos\\left(\\sqrt{\\simplify{{c1}-{b1}^2}}t\\right)+\\frac{-\\simplify{{B}*{b1}-{C}}}{\\sqrt{\\simplify{{c1}-{b1}^2}}}e^{-\\var{b1}t}\\sin\\left(\\sqrt{\\simplify{{c1}-{b1}^2}}t\\right)\\)

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"C": {"name": "C", "group": "Ungrouped variables", "definition": "random(2 .. 14#1)", "description": "", "templateType": "randrange", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(2 .. 8#1)", "description": "", "templateType": "randrange", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "{b1}^2+{f}^2", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(6 .. 12#1)", "description": "", "templateType": "randrange", "can_override": false}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["A", "a1", "B", "b1", "C", "c1", "f"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write down the inverse Laplace transform

\n

\\(\\mathscr{L}^{-1}\\{F(s)\\}=\\) [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({B}*e^(-{b1}*t)*cos({f}*t)+({C}-{B}*{b1})/{f}*e^(-{b1}*t)*sin({f}*t))", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "t", "value": ""}]}], "sortAnswers": true}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ugur's copy of Laplace: Find the Laplace transform of ode", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Clare Lundon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/492/"}, {"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

\n

", "advice": "

We start with the differential equation:

\n

\\[\\frac{d^2x}{dt^2}+\\var{a}\\frac{dx}{dt}+\\var{b}x(t)=\\var{c}e^{-\\var{d}t}  \\quad  \\mbox{  where }\\quad   x(0)=\\var{f} \\mbox{ and }  x'(0)=\\var{g}.\\]

\n

If take Laplace transform of both sides, and apply linearity we get 

\n

\\[\\mathcal L\\left\\{\\frac{d^2x}{dt^2}\\right\\}+\\var{a}\\mathcal L\\left\\{\\frac{dx}{dt}\\right\\}+\\var{b}\\mathcal L\\left\\{x(t)\\right\\}=\\var{c}\\mathcal L\\left\\{e^{-\\var{d}t}\\right\\}.\\]

\n

Then, using Laplace Trasnform table, and applying the Laplace Transform of Derivatives rule we get 

\n

\\[s^2X(s)-sx(0)-x'(0)+\\var{a}(s(X(s)-x(0))+\\var{b}X(s)=\\frac{\\var{c}}{s+\\var{d}}.\\]

\n

Plug-in the initial value conditions to get:

\n

\\[s^2X(s)-\\var{f}s-\\var{g}+\\var{a}sX(s)-\\simplify{{a}*{f}}+\\var{b}X(s)=\\frac{\\var{c}}{s+\\var{d}}.\\]

\n

Then collect $X$ terms on one side to get:

\n

\\[s^2X(s)+\\var{a}sX(s)+\\var{b}X(s)=\\frac{\\var{c}}{s+\\var{d}}+\\var{f}s+\\simplify{{g}+{a}*{f}}.\\]

\n

Take into $X$ common paranthesis:

\n

\\[(s^2+\\var{a}s+\\var{b})X(s)=\\frac{\\var{c}+(\\var{f}s+\\simplify{{g}+{a}*{f}})(s+\\var{d})}{s+\\var{d}}.\\]

\n

Finally make $X$ the subject:

\n

\\[X(s)=\\frac{\\simplify{{f}s^2+({a}*{f}+{g}+{d}*{f})s+(({g}+{f}*{a})*{d}+{c})}}{(s+\\var{d})(s^2+\\var{a}s+\\var{b})}.\\]

\n

.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(3 .. 12#1)", "description": "", "templateType": "randrange", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(3 .. 8#1)", "description": "", "templateType": "randrange", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(3 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(10 .. 25#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "f", "g"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given the differential equation:

\n

\n

\\(\\dfrac{d^2x}{dt^2}+\\var{a}\\dfrac{dx}{dt}+\\var{b}x=\\var{c}e^{-\\var{d}t}\\)    where   \\(x(0)=\\var{f}\\) and  \\(x'(0)=\\var{g}\\)

\n

\n
    \n
  1. Take the Laplace transform of the equation,
  2. \n
  3. Substitute in the conditions,
  4. \n
  5. Rearrange for \\(\\mathscr{L}(x)\\) and then express the right-hand side as a single fraction.
  6. \n
  7. Enter this fraction in the box below.
  8. \n
\n

\n

\n

\\(\\mathscr{L}(x)=\\) [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({f}s^2+({f}*{a}+{g}+{d}*{f})s+(({g}+{a}*{f})*{d}+{c}))/((s+{d})(s^2+{a}s}+{b}))", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "s", "value": ""}]}], "sortAnswers": false}, {"type": "information", "useCustomName": true, "customName": "b) (*)", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the inverse Laplace transform of the expression you found in the previous part (this can be challenging). 

"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ugur's copy of Laplace transform: irreducible quadratic factor", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

The Laplace Transfor of a function $x(t)$ is given by 

\n

\\[X(s)=
\\frac{\\simplify{{A} + {B}}s^2 + \\simplify{{A}*{b1}*2 +{B}*{a1} + {C}}s + \\simplify{{A}*{c1}+{C}*{a1}}}{s^3 +\\simplify{{a1}+{{b1}*2}}s^2 +\\simplify{{c1}+{{a1}*{b1}*2}}s + \\simplify{{a1}*{c1}}}.\\]

", "advice": "

a) Observe that 

\n

\\[\\frac{\\simplify{{A}+{B}}s^2+\\simplify{{A}*{b1}*2 + {B}*{a1} + {C}}s + \\simplify{{A}*{c1}  + {C}*{a1}}}{s^3 +\\simplify{{a1}+{{b1}*2}}s^2 +\\simplify{{c1}+{{a1}*{b1}*2}}s + \\simplify{{a1}*{c1}}} =\\frac{\\var{A}s^2+\\simplify{{A}*{b1}*2}s + \\simplify{{A}*{c1}} +\\var{B}s^2 + \\simplify{{B}*{a1}}s +\\var{C}s + \\simplify{{C}*{a1}}}{s^3 +\\simplify{{a1}+{{b1}*2}}s^2 +\\simplify{{c1}+{{a1}*{b1}*2}}s + \\simplify{{a1}*{c1}}}= \\\\[6mm]
=\\frac{\\var{A}(s^2+\\simplify{{b1}*2}s+\\var{c1}) +(s+\\var{a1})(\\var{B}s+\\var{C})}{(s+\\var{a1})(s^2+\\simplify{{b1}*2}s+\\var{c1})} =\\frac{\\var{A}}{s+\\var{a1}}+\\frac{\\var{B}s+\\var{C}}{s^2+\\simplify{{b1}*2}s+\\var{c1}}\\]



b)
We established 
\\[X(s)=\\frac{\\var{A}}{s+\\var{a1}}+\\frac{\\var{B}s+\\var{C}}{s^2+\\simplify{{b1}*2}s+\\var{c1}}\\]

\n

in the previous part.

\n

By Completing the square we get:

\n

\\[X(s)=\\frac{\\var{A}}{s+\\var{a1}}+\\frac{\\var{B}s+\\var{C}}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}}.\\]

\n

Making it further resemble a transform in the Laplace Transfrom table we need to further manipulate the numerator of the second fraction, and then decompose it fruther:

\n

\\[X(s)=\\frac{\\var{A}}{s+\\var{a1}}+\\frac{\\var{B}(s+\\var{b1})-\\simplify{{B}*{b1}-{C}}}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}} = \\frac{\\var{A}}{s+\\var{a1}}+\\frac{\\var{B}(s+\\var{b1})}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}} -\\frac{\\simplify{{B}*{b1}-{C}}}{\\sqrt{\\simplify{{c1}-{b1}^2}}}\\cdot\\frac{\\sqrt{\\simplify{{c1}-{b1}^2}}}{(s+\\var{b1})^2+\\simplify{{c1}-{b1}^2}}.\\]

\n

Now, reading from the Fourier Transform table:

\n

\\[x(t)=\\var{A}e^{\\var{a1}t}+\\var{B}e^{-\\var{b1}t}\\cos\\left(\\sqrt{\\simplify{{c1}-{b1}^2}}t\\right)+\\frac{-\\simplify{{B}*{b1}-{C}}}{\\sqrt{\\simplify{{c1}-{b1}^2}}}e^{-\\var{b1}t}\\sin\\left(\\sqrt{\\simplify{{c1}-{b1}^2}}t\\right)\\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(6 .. 12#1)", "description": "", "templateType": "randrange", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "{b1}^2+{f}^2", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(2 .. 8#1)", "description": "", "templateType": "randrange", "can_override": false}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "C": {"name": "C", "group": "Ungrouped variables", "definition": "random(2 .. 14#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["A", "a1", "B", "b1", "C", "c1", "f"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the partial fraction decomposition of $X(s)$.

\n

$X(s) = $ 

\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({A}/(s+{a1})) +({B}*s+{C})/((s^2 + ({b1}*2)s)+{c1})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "s", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write down the inverse Laplace transform

\n

\\(x(t)=\\) [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{A}*e^(-{a1}*t)+e^(-{b1}*t)({B}*cos({f}*t)+({C}-{B}*{b1})/{f}*sin({f}*t))", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "t", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Dampened Harmonic Oscillator via Laplace Transforms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "


\n
\n
\n
\n
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Solve the differential equation 
\\[x^{\\prime\\prime} = -\\simplify{{k}*{k}}x - \\var{b}x^\\prime \\quad \\mbox{ with the initial conditions } \\quad x(0) = \\var{l} \\, \\mbox{ and }\\, x^\\prime(0) = 0\\]

", "advice": "

By re-arranging the given ODE we get:

\n

\\[x^{\\prime\\prime} +\\var{b}x^\\prime + \\simplify{{k}*{k}}x = 0. \\]

\n

Then, let $X=\\mathcal{L}\\{x\\}$, and apply Laplace Transform to get 

\n

\\[(s^2X-sx(0)-x^\\prime(0)) +\\var{b}(sX-x(0)) +\\simplify{{k}*{k}}X=0.\\]

\n

Then plugging in the initial values:

\n

\\[(s^2X-\\var{l}s) +\\var{b}(sX-\\var{l}) +\\simplify{{k}*{k}}X=0.\\] 

\n

By re-arranging, we get 

\n

\\[X=\\frac{\\var{l}s + \\simplify{2*{k}{l}}}{s^2+\\var{b}s +\\simplify{{k}*{k}}} = \\frac{\\var{l}(s +\\var{k}) + \\simplify{{l}*{k}}}{(s+\\var{k})^2} = \\frac{\\var{l}}{s+\\var{k}} + \\frac{\\simplify{{l}*{k}}}{(s+\\var{k})^2}.\\]

\n

Finally, by the transform table and the property $\\mathcal{L}\\left\\{t^n g(t)\\right\\} = (-1)^n\\frac{d^nG}{ds^n}$ (where $\\mathcal L\\{g(t)\\} = G(s)$ (Note that one can use the First Shift Theorem instead of this property here). 

\n

\\[x(t) =\\var{l}e^{-4t} + \\simplify{{l}*{k}}te^{-4t} \\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"k": {"name": "k", "group": "Ungrouped variables", "definition": "random(2 .. 8#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "2k", "description": "", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(0 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["k", "b", "l"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Take the Laplace transform of the given ODE and write down the transformed equation: 

\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Part a)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "s^2X-{l}s +{b}(sX-{l}) +{{k}*{k}}X=0", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "s", "value": ""}, {"name": "sx", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Re-arrange the transfomed equation to isolate $X$.

\n

$X=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({l}s + {2*{k}*{l}})/(s^2+{b}s +{{k}*{k}})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "s", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the partial fractions decomposition of the rational function you found above.

\n

$X=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({l})/(s+{k}) + ({{l}*{k}})/((s+{k})^2)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "s", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the inverse transform of $X(s)$: 

\n

$x(t)=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{l}e^(-4t) + {{l}*{k}}te^(-4t)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "t", "value": ""}, {"name": "te", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": []}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "extensions": [], "custom_part_types": [], "resources": []}