// Numbas version: exam_results_page_options {"name": "Double Integrals", "metadata": {"description": "

set of exercises on double and triple integrals

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], []], "questions": [{"name": "Ugur's copy of Resolve a double integral", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "

Calculate a repeated integral of the form $\\displaystyle I=\\int_0^1\\;\\int_0^{x^{m-1}}mf(x^m+a)dy \\;dx$

\n

The $y$ integral is trivial, and the $x$ integral is of the form $g'(x)f'(g(x))$, so it straightforwardly integrates to $f(g(x))$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Evaluate the following repeated integral:

\n

\\[ I = \\int_0^1  \\; \\int_0^{\\simplify[all]{x^{m-1}}}\\var{m} \\var{fun} \\; \\mathrm{d}y\\; \\mathrm{d}x \\]

", "advice": "

We want to find

\n

\\[ I=\\int_0^1  \\; \\int_0^{\\simplify[all]{x^{m-1}}} \\var{m} \\var{fun} \\; \\mathrm{d}y \\; dx \\]

\n

The innermost integral gives:

\n

\\[ \\int_0^{\\simplify[all]{x^{m-1}}}\\var{m} \\var{fun} \\; \\mathrm{d}y = \\left[\\var{m}y \\; \\var{fun} \\right]_0^{\\simplify[all]{x^{m-1}}}=\\simplify[all]{{m}x^{m-1}} \\var{fun} \\]

\n

So we have to find  $\\displaystyle I=\\int_0^1\\simplify[all]{{m}x^{m-1}} \\var{fun} \\; \\mathrm{d}x$.

\n

Note that if we use the substitution $u=\\simplify[all]{x^{m}+{a}}$ then it is easy to find this last definite integral and we find that:

\n

$I=\\var{ans}$ to 3 decimal places.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"ans": {"name": "ans", "group": "Ungrouped variables", "definition": "precround(upper-lower,3)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "fun": {"name": "fun", "group": "Ungrouped variables", "definition": "latex(\n switch(\n t=1,\n '\\\\sin',\n t=2,\n '\\\\cos',\n '\\\\exp'\n )\n +'(x^{'+m+'}+'+a+')'\n)", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "upper": {"name": "upper", "group": "Ungrouped variables", "definition": "switch(t=1,-cos(1+a),t=2,sin(1+a),exp(1+a))", "description": "", "templateType": "anything", "can_override": false}, "lower": {"name": "lower", "group": "Ungrouped variables", "definition": "switch(t=1,-cos(a),t=2,sin(a),exp(a))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "upper", "lower", "m", "t", "ans", "fun"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$I=\\;$[[0]]

\n

Input your answer to 3 decimal places.

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans", "maxValue": "ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ugur's copy of Double integral - limit is a polynomial", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "

3 Repeated integrals of the form $\\int_a^b\\;\\int_c^{f(x)}g(x,y)\\;dy \\;dx$ where $g(x,y)$ is a polynomial in $x,\\;y$ and $f(x)$ is a degree 0, 1 or 2 polynomial in $x$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Calculate the following repeated integrals.

", "advice": "

a)

\n

\\[I = \\int_0^{\\var{a}} \\;\\int_{\\var{f}}^{\\var{g}}\\simplify[all]{({b}+{c}*x+{d}*y)} \\; \\mathrm{d}y\\; \\mathrm{d}x\\]

\n

Calculating the inner integral, we have:

\n

\\begin{align}
\\int_{\\var{f}}^{\\var{g}}\\simplify[all,!noleadingminus,!collectNumbers]{({b}+{c}*x+{d}*y)} \\; \\mathrm{d}y &= \\left[\\simplify[all,!noleadingminus,!collectNumbers]{{b}y+{c}*x*y+{d}*y^2/2}\\right]_{\\var{f}}^{\\var{g}}\\\\
&= \\simplify[all,!noleadingminus,!collectNumbers]{{b} * {g} + {c} * {g} * x + {d / 2} * {g ^ 2} + {b} * { -f} + {c} * { -f} * x + {d / 2} * { -(f ^ 2)}} \\\\
&= \\simplify[all,!noleadingminus,!collectNumbers]{ {b * g -(b * f) + (d / 2) * (g ^ 2 -(f ^ 2))} + {c * g -(c * f)} * x}
\\end{align}

\n

The outer integral gives:

\n

\\begin{align}
I &= \\simplify[std]{DefInt({b * g -(b * f) + (d / 2) * (g ^ 2 -(f ^ 2))} + {c * g -(c * f)} * x,x,0,{a}) } \\\\
&= \\left[\\simplify[std]{{b * g -(b * f) + (d / 2) * (g ^ 2 -(f ^ 2))} * x + {(c * g -(c * f)) / 2} * x ^ 2}\\right]_0^{\\var{a}} \\\\
&= \\var{ans1}
\\end{align}

\n

b)

\n

\\[ I=\\var{(m + 1) * (m + n + 2)} \\int_0^1 \\; \\mathrm{d}x \\int_x^{\\var{b1}}\\simplify[std]{({n + 1} * x ^ {m} * y ^ {n})} \\; \\mathrm{d}y \\]

\n

Calculating the inner integral, we have:

\n

\\begin{align}
\\int_x^{\\var{b1}}\\simplify[std]{({n + 1} * x ^ {m} * y ^ {n})}dy &= \\left[x^{\\var{m}}y^{\\var{n+1}}\\right]_x^{\\var{b1}} \\\\
&= \\simplify{{b1 ^ (n + 1)}* x ^ {m} -(x ^ {m + n + 1})}
\\end{align}

\n

Finally the outer integral gives:

\n

\\begin{align}
I &= \\var{(m + 1) * (m + n + 2)}\\int_0^1\\simplify[std]{{b1^ (n + 1)} * x ^ {m} -(x ^ {m + n + 1})} \\; \\mathrm{d}x \\\\
&= \\simplify[std]{ {(m + 1) * (m + n + 2)} * ({b1 ^ (n + 1)} / {m + 1} -(1 / {m + n + 2})) } \\\\
&= \\var{ans2}
\\end{align}

\n

c)

\n

\\[ I=\\var{con}\\int_{-1}^1  \\; \\int_0^{\\simplify[all]{{c2}+{d2}*x^{p2}}}\\simplify[all]{{c1}+{d1}*y^{p1}} \\; \\mathrm{d}y \\; \\mathrm{d}x \\]

\n

Calculating the inner integral, we have:

\n

\\begin{align}
\\int_0^{\\simplify[all]{{c2}+{d2}*x^{p2}}}\\simplify[all]{{c1}+{d1}*y^{p1}} \\; \\mathrm{d}y &= \\left[\\simplify[all]{{c1} * y + {d1 / (p1 + 1)} * y ^ {p1 + 1}}\\right]_0^{\\simplify[all]{{c2}+{d2}*x^{p2}}} \\\\
&= \\simplify[std]{{c1} * ({c2} + {d2} * x ^ {p2}) + {d1 / (p1 + 1)} * ({c2} + {d2} * x ^ {p2}) ^ {p1 + 1}} \\\\
&= \\simplify[std]{ {c1 * c2} + {c1 * d2} * x ^ {p2} + {p1 -1} * {h1} * ({c2 ^ 3} + {3 * c2 ^ 2 * d2} * x ^ {p2} + {3 * c2 * d2 ^ 2} * x ^ {2 * p2} + {d2} ^ 3 * x ^ {3 * p2}) + {2 -p1} * {h1} * ({c2 ^ 2} + {2 * c2 * d2} * x ^ {p2} + {d2 ^ 2} * x ^ {2 * p2})} \\\\
&= \\simplify[std,collectNumbers]{{c1 * c2 + (p1 -1) * h1 * c2 ^ 3 + (2 -p1) * h1 * c2 ^ 2} + {c1 * d2 + (p1 -1) * h1 * 3 * c2 ^ 2 * d2 + (2 -p1) * h1 * 2 * c2 * d2} * x ^ {p2} + {(p1 -1) * h1 * 3 * c2 * d2 ^ 2 + (2 -p1) * h1 * d2 ^ 2} * x ^ {2 * p2} + {(p1 -1) * h1 * d2 ^ 3} * x ^ {3 * p2}}
\\end{align}

\n

Finally the outer integral gives:

\n

\\begin{align}
I &= \\simplify[std]{{con} * DefInt({c1 * c2 + (p1 -1) * h1 * c2 ^ 3 + (2 -p1) * h1 * c2 ^ 2} + {c1 * d2 + (p1 -1) * h1 * 3 * c2 ^ 2 * d2 + (2 -p1) * h1 * 2 * c2 * d2} * x ^ {p2} + {(p1 -1) * h1 * 3 * c2 * d2 ^ 2 + (2 -p1) * h1 * d2 ^ 2} * x ^ {2 * p2} + {(p1 -1) * h1 * d2 ^ 3} * x ^ {3 * p2},x, -1,1)} \\\\
&= \\var{ans3}
\\end{align}

\n

 

\n

 

", "rulesets": {"std": ["all", "!collectnumbers", "!noleadingminus", "fractionNumbers"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"p2": {"name": "p2", "group": "Ungrouped variables", "definition": "if(p1=1,2,1)", "description": "", "templateType": "anything", "can_override": false}, "ans2": {"name": "ans2", "group": "Ungrouped variables", "definition": "(m+n+2)*b1^(n+1)-m-1", "description": "", "templateType": "anything", "can_override": false}, "ans3": {"name": "ans3", "group": "Ungrouped variables", "definition": "if(p1=1,30*c1*c2+10*c1*d2+15*c2^2*d1+10*d1*d2*c2+3*d1*d2^2,6*c1*c2+2*d1*c2^3+2*d1*c2*d2^2)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2,4,6)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(-2..3)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(-2..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "switch(p1=1,random(-6,-4,-2,2,4,6),random(-6,-3,3,6))", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-2,-1,1,2)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "a*b*(g-f)+c*(g-f)*a^2/2+d*(g^2-f^2)*a/2", "description": "", "templateType": "anything", "can_override": false}, "p1": {"name": "p1", "group": "Ungrouped variables", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}, "con": {"name": "con", "group": "Ungrouped variables", "definition": "if(p2=1,3,15)", "description": "", "templateType": "anything", "can_override": false}, "h1": {"name": "h1", "group": "Ungrouped variables", "definition": "round(d1/(p1+1))", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "f+random(2,4,6)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-4..4 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "p2", "c", "b", "d", "g", "f", "ans1", "ans2", "h1", "ans3", "m", "n", "p1", "b1", "c2", "c1", "d1", "d2", "con"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[I = \\int_0^{\\var{a}}\\;\\int_{\\var{f}}^{\\var{g}}\\simplify[all]{({b}+{c}*x+{d}*y)}\\;dy \\;dx\\]

\n

$I=$ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans1", "maxValue": "ans1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[I=\\var{(m+1)(m+n+2)}\\int _0^1\\;\\int_x^{\\var{b1}}\\simplify[all]{{n+1}*x^{m}*y^{n}}\\;dy \\;dx\\]

\n

$I=\\;$[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans2", "maxValue": "ans2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[I=\\var{con}\\int_{-1}^1\\;\\int_0^{\\simplify[all]{{c2}+{d2}*x^{p2}}}\\simplify[all]{{c1}+{d1}*y^{p1}}\\;dy \\;dx\\]

\n

$I=\\;$?[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans3", "maxValue": "ans3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Tutorial: Inputting Integrals", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "

Inputing Integrals tutorial

", "licence": "Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International"}, "statement": "

To input integrals in Numbas we use the commands int() and defint(). We will see how to use them in more detail here. 

\n

This is a tutorial 

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

To input the integral $\\int x^3 \\,dx$, write int(x^3, x) in the area below.

\n

", "answer": "int(x^3, x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

One can also write the expression $\\int\\, dx$. To do so, input int('',x). The expression '' tells that the firtst argument of the function is an empty string.

", "answer": "int('',x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

You can also input definite integrals. For this we use defint(). This function has four arguments, as made clear in the below example:

\n

To input $\\int^b_a f(x) \\, dx$, write defint(f(x), x, a, b).

", "answer": "defint(f(x), x, a, b)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "a", "value": ""}, {"name": "b", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

For inputting double integrals, one can use int() and defint() nested. 

\n

For example to write $\\int^b_a\\int^d_c g(x,y) \\,dx\\, dy$, input defint(defint(g(x,y), x, c,d),y,a,b) 

", "answer": "defint(defint(g(x,y), x, c,d),y,a,b)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "a", "value": ""}, {"name": "b", "value": ""}, {"name": "c", "value": ""}, {"name": "d", "value": ""}, {"name": "x", "value": ""}, {"name": "y", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Area between 2 graphs by Double Integral (Advanced)", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "

Calculating the area enclosed between a linear function and a quadratic function by integration. The limits (points of intersection) are not given in the question and must be calculated.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Find the area enclosed by $\\simplify{y={m}x+{c_1}}$ and $\\simplify{y=x^2+{b}x+{c_2}}$ using a double integral.

\n

\n

{geogebra_applet('https://www.geogebra.org/m/fyxr2fqj',defs)}

", "advice": "

a)

\n

To find the points of intersection, we will solve the given eqautions simultaneously. We equate the two and solve for $x$ first:

\n

\\[ \\begin{split} \\simplify{x^2+{b}x+{c_2}} &\\,= \\simplify{{m}x+{c_1}}, \\\\ \\simplify{x^2+{b-m}x+{c_2-c_1}} &\\,=0, \\\\ \\simplify{(x-{cp1})(x-{cp2})}&\\,=0. \\end{split} \\]

\n

Therefore, the points of intersection are when $\\simplify{x1={cp1}}$ and $\\simplify{x2={cp2}}$.

\n

Now by pluging-in these values into $\\simplify{y={m}x+{c_1}}$ we get $\\simplify{y_1 = {y1}}$ and $\\simplify{y_2 = {y2}}$.

\n

\n

b) 

\n

We are asked to integrate $y$ first. So, $x$ can vary freely in the range we found above, and $y$ will vary depending on $x$. So the relevant boundaries of the variables are 

\n

\\[ \\var{x1} < x < \\var{x2} \\quad \\mbox{ and }\\quad  \\simplify{x^2+{b}x+{c_2}} < y < \\simplify{{m}x+{c_1}}\\simplify{x^2+{b}x+{c_2}}.\\]

\n

Then the integral 

\n

\\[\\int_{\\var{x1}}^{\\var{x2}} \\int_{\\simplify{x^2+{b}x+{c_2}}}^{\\simplify{{m}x+{c_1}}}\\, \\mathrm{d}y\\, \\mathrm{d}x\\] 

\n

can be used to compute the shaded area.

\n

\n

c)

\n

We start with the inner integral first

\n

\\[\\int_{\\simplify{x^2+{b}x+{c_2}}}^{\\simplify{{m}x+{c_1}}}\\, \\mathrm{d}y = y|_{\\simplify{x^2+{b}x+{c_2}}}^{\\simplify{{m}x+{c_1}}} =  \\simplify{{m}x+{c_1}} - (\\simplify{x^2+{b}x+{c_2}}) = \\simplify{-x^2 + {m-b}x  + {c_1-c_2}}.\\]

\n

\n

Then we get 

\n

\\[\\int_{\\var{x1}}^{\\var{x2}} \\int_{\\simplify{x^2+{b}x+{c_2}}}^{\\simplify{{m}x+{c_1}}}\\, \\mathrm{d}y\\, \\mathrm{d}x =\\] {advice}

\n

\n

 

\n

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-6..6)", "description": "", "templateType": "anything", "can_override": false}, "c_1": {"name": "c_1", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "cp1": {"name": "cp1", "group": "Ungrouped variables", "definition": "(-(b-m)-sqrt(dis))/2", "description": "", "templateType": "anything", "can_override": false}, "cp2": {"name": "cp2", "group": "Ungrouped variables", "definition": "(-(b-m)+sqrt(dis))/2", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "c_2": {"name": "c_2", "group": "Ungrouped variables", "definition": "random(-8..8 except [0,c_1])", "description": "", "templateType": "anything", "can_override": false}, "dis": {"name": "dis", "group": "Ungrouped variables", "definition": "(b-m)^2-4*(c_2-c_1)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2+(cp1)^3/3-(m-b)cp1^2/2-(c_1-c_2)*cp1", "description": "", "templateType": "anything", "can_override": false}, "sol2dp": {"name": "sol2dp", "group": "Ungrouped variables", "definition": "precround(sol,2)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "if(sol=round(sol),'{simplified}',advice2)", "description": "", "templateType": "anything", "can_override": false}, "simplified": {"name": "simplified", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\begin{split}\\\\simplify[all, !noLeadingMinus]{defint(-x^2+{m-b}x+{c_1-c_2},x,{cp1},{cp2})} &\\\\,= \\\\left[\\\\simplify[all, !noLeadingMinus]{-x^3/3+{m-b}x^2/2+{c_1-c_2}x} \\\\right]_\\\\var{cp1}^\\\\var{cp2},\\\\\\\\ &\\\\,=\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp2^3/3}+{(m-b)*cp2^2/2}+{(c_1-c_2)*cp2}}\\\\right]-\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp1^3/3}+{(m-b)*cp1^2/2}+{(c_1-c_2)*cp1}}\\\\right]\\\\\\\\ &\\\\,= \\\\left(\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2}}\\\\right)-\\\\left(\\\\simplify[all, fractionNumbers]{{-(cp1)^3/3+(m-b)cp1^2/2+(c_1-c_2)*cp1}}\\\\right)\\\\\\\\ &\\\\,=\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2+(cp1)^3/3-(m-b)cp1^2/2-(c_1-c_2)*cp1}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "simplify": {"name": "simplify", "group": "Ungrouped variables", "definition": "safe(\"

\\\\[ \\\\begin{split}\\\\simplify[all, !noLeadingMinus]{defint(-x^2+{m-b}x+{c_1-c_2},x,{cp1},{cp2})} &\\\\,= \\\\left[\\\\simplify[all, !noLeadingMinus]{-x^3/3+{m-b}x^2/2+{c_1-c_2}x} \\\\right]_\\\\var{cp1}^\\\\var{cp2},\\\\\\\\ &\\\\,=\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp2^3/3}+{(m-b)*cp2^2/2}+{(c_1-c_2)*cp2}}\\\\right]-\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp1^3/3}+{(m-b)*cp1^2/2}+{(c_1-c_2)*cp1}}\\\\right]\\\\\\\\ &\\\\,= \\\\left(\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2}}\\\\right)-\\\\left(\\\\simplify[all, fractionNumbers]{{-(cp1)^3/3+(m-b)cp1^2/2+(c_1-c_2)*cp1}}\\\\right)\\\\\\\\ &\\\\,=\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2+(cp1)^3/3-(m-b)cp1^2/2-(c_1-c_2)*cp1}}\\\\\\\\ &\\\\,=\\\\var{sol2dp} \\\\,\\\\text{(2dp)}. \\\\end{split} \\\\]

\")", "description": "", "templateType": "long string", "can_override": false}, "advice2": {"name": "advice2", "group": "Ungrouped variables", "definition": "if(sol=sol2dp,'{simplifyy}','{simplify}')", "description": "", "templateType": "anything", "can_override": false}, "simplifyy": {"name": "simplifyy", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\begin{split}\\\\simplify[all,!noLeadingMinus]{defint(-x^2+{m-b}x+{c_1-c_2},x,{cp1},{cp2})} &\\\\,= \\\\left[\\\\simplify[all,!noLeadingMinus]{-x^3/3+{m-b}x^2/2+{c_1-c_2}x} \\\\right]_\\\\var{cp1}^\\\\var{cp2},\\\\\\\\ &\\\\,=\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp2^3/3}+{(m-b)*cp2^2/2}+{(c_1-c_2)*cp2}}\\\\right]-\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp1^3/3}+{(m-b)*cp1^2/2}+{(c_1-c_2)*cp1}}\\\\right]\\\\\\\\ &\\\\,= \\\\left(\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2}}\\\\right)-\\\\left(\\\\simplify[all, fractionNumbers]{{-(cp1)^3/3+(m-b)cp1^2/2+(c_1-c_2)*cp1}}\\\\right)\\\\\\\\ &\\\\,=\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2+(cp1)^3/3-(m-b)cp1^2/2-(c_1-c_2)*cp1}}\\\\\\\\ &\\\\,=\\\\var{sol2dp} \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "defs": {"name": "defs", "group": "Ungrouped variables", "definition": "[\n ['M',m],\n ['D',c_1],\n ['B',b],\n ['C',c_2]\n]", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "((m-b)+delta)/2", "description": "", "templateType": "anything", "can_override": false}, "delta": {"name": "delta", "group": "Ungrouped variables", "definition": "sqrt((b-m)^2 - 4*(c_2-c_1))", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "((m-b)-delta)/2", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "m*x1 + c_1", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "m*x2 + c_1", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "cp1=round(cp1) and cp2=round(cp2) and dis>0", "maxRuns": "100"}, "ungrouped_variables": ["m", "c_1", "b", "c_2", "cp1", "cp2", "dis", "sol", "sol2dp", "advice", "advice2", "simplified", "simplify", "simplifyy", "defs", "x2", "delta", "x1", "y1", "y2"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Denote the intersection points of $\\simplify{y={m}x+{c_1}}$ and $\\simplify{y=x^2+{b}x+{c_2}}$ as $(x_1, y_1)$ (leftmost) and $(x_2,y_2)$ (rightmost). Find these points

\n

$x_1=$[[0]], $y_1=$[[1]]

\n

$x_2=$[[2]], $y_2=$ [[3]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{x1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{y1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{x2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": true, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{y2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write a double integral, integrating $y$ first, to compute the shaded area. 

", "answer": "defint(defint( '',y, x^2+{b}x+{c_2}, {m}x+{c_1}), x,{x1},{x2})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Compute the double integral you wrote in part b)

\n

[[0]] (Give your answers to 2 decimal places where necessary)

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol2dp}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Volume of a tetrahedron", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "

Volume of a tetrahedron using integrals

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Find the volume of the tetrahedron bounded by the coordinate planes $x=0$, $y=0$ and $z=0$ and the plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} =1$.

", "advice": "

The coordinate surfaces $x=0$, $y=0$ and $z=0$ are given. The plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} = 1$ can be rewritten as a functions as follows 

\n

\\[z = f(x,y) = \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right).\\]

\n

The surface of $f(x,y)$ intersects the axes at $x=\\var{a}, y=\\var{b}$ and $z=\\var{c}$.

\n

Let us integrate $y$-firts. Then the triangular region the tetrahedron sits is bounded by the lines $x=0, y=0$ and $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} = 1$. Then we have the following bounds for integration 

\n

\\[0<x<\\var{a} \\quad \\mbox{and} \\quad 0 < y<  \\frac{\\var{b}}{\\var{a}}(\\var{a} -x).\\]

\n

Hence, we can compute the volume of the tetrahedron as 

\n

\\[V = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}f(x,y) \\,dy\\, dx = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\, dx =\\\\[3mm]
= \\int_0^\\var{a} \\var{c}\\left[ y - \\frac{xy}{\\var{a}} - \\frac{y^2}{\\simplify{2*{b}}}\\right]_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\, dx = \\int_0^\\var{a} \\frac{\\simplify{{b*c}}}{\\simplify{{2*a^2}}}(\\var{a}-x)^2 \\, dx = \\frac{\\simplify{{a*b*c}}}{6}\\]

\n
\n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

(enter your answer as an interger or a fraction)

", "answer": "{a}*{b}*{c}/6", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "mass of tetrahedron", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "

mass of tetrahedron via integration

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Cosider the tetrahedron bounded by the coordinate planes $x=0$, $y=0$ and $z=0$ and the plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} =1$. Assume that it has a density function $\\rho(x) = \\var{R0}(\\var{a}+x)$. 

", "advice": "

a)

\n

The coordinate surfaces $x=0$, $y=0$ and $z=0$ are given. The plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} = 1$ can be rewritten as a functions as follows 

\n

\\[z = f(x,y) = \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right).\\]

\n

The surface of $f(x,y)$ intersects the axes at $x=\\var{a}, y=\\var{b}$ and $z=\\var{c}$.

\n

We can write the boundaries of the tetrahedron as 

\n

\\[0<x<\\var{a} \\quad \\mbox{and} \\quad 0 < y<  \\frac{\\var{b}}{\\var{a}}(\\var{a} -x) \\quad\\mbox{and }\\quad 0\\leq z \\leq \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right).\\]

\n

\n

Thus, with mass element $dM = \\rho(x)dV = \\rho(x)dx\\,dy\\,dz$, the total mass is 

\n

\\[M= \\int_T\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}\\rho(x)\\,dz\\,dy\\,dx =\\\\[3mm]
 \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} \\var{R0}(\\var{a}+x) \\,dz\\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}  \\,dz\\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\left[ \\frac{\\simplify{{b*c}}}{\\simplify{{2*a^2}}}(\\var{a}-x)^2\\right]\\, dx = \\frac{5\\cdot\\var{a}^2\\cdot\\var{b}\\cdot\\var{c}\\cdot\\var{R0}}{24}=\\frac{\\simplify{{5*{a^2}*{b}*{c}*{R0}}}}{24}.\\]

\n

\n

b)

\n

We start with the $x$ coordinate.

\n

\\[\\bar x= \\frac{1}{M}\\int_T x\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}x\\rho(x)\\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M} \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} x\\var{R0}(\\var{a}+x) \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} x\\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}  \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} x\\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} x\\var{R0}(\\var{a}+x)\\left[ \\frac{\\simplify{{b*c}}}{\\simplify{{2*a^2}}}(\\var{a}-x)^2\\right]\\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\int_0^\\var{a} x  (\\var{a}+x)\\left[ (\\var{a}-x)^2\\right]\\, dx =
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\int_0^\\var{a}x(\\var{a^3} -\\var{a^2}x-\\var{a} x^2 + x^3) \\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\int_0^\\var{a}\\var{a^3}x -\\var{a^2}x^2-\\var{a} x^3 + x^4 \\, dx = \\\\[3mm]
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\left[\\frac{\\var{a^3}x^2}{2} -\\frac{\\var{a^2}x^3}{3}-\\frac{\\var{a} x^4}{4} + \\frac{x^5}{5} \\right]_0^{\\var{a}}=\\\\[3mm]
\\simplify[fractionNumbers]{({a}^5/2 - ({a}^5)/3 - {a}^5/4 + {a}^5/5) *{R0*b*c}/{2*a^2*Mass}} =
\\simplify[fractionNumbers,otherNumbers]{({a}^5/2 - ({a}^5)/3 - {a}^5/4 + {a}^5/5) *{R0*b*c}/{2*a^2*Mass}}.\\]

\n

Simlarly, for $y$ coordinate:

\n

\\[\\bar y = \\frac{1}{M}\\int_T y\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}y\\rho(x)\\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M} \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} y\\var{R0}(\\var{a}+x) \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} y \\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}  \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} y\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( y - \\frac{xy}{\\var{a}} - \\frac{y^2}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\frac{\\simplify{{c*b^2}}}{\\simplify{{6*a^3}}}\\left[\\var{a^3}-3\\cdot\\simplify[unitFactor]{{a^2}x} +3\\cdot\\simplify[unitFactor]{{a}x^2}-x^3\\right]\\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b^2*c}}}{\\simplify{{6*a^3}}M}\\int_0^\\var{a}   (\\var{a}+x)( \\var{a}-x)^3, dx =
\\frac{\\simplify{{R0*b^2*c}}}{\\simplify{{6*a^3}}M}\\int_0^\\var{a}\\var{a^4} -2\\cdot\\simplify[unitFactor]{{a^3}x} +2\\cdot\\simplify[unitFactor]{{a}x^3}-x^4 \\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b^2*c}}}{\\simplify{{6*a^3}}M}\\left[\\simplify[unitFactor]{{a^4}x} - \\simplify[unitFactor]{{a^3}x^2} +\\frac{\\simplify[unitFactor]{{a}x^4}}{2}-\\frac{x^5}{5} \\right]_0^\\var{a} = \\\\[3mm]

\\simplify[fractionNumbers]{({a}^5 - ({a}^5) + {a}^5 /2- {a}^5/5) *{R0*b^2*c}/{6*a^3*Mass}} =
\\simplify[fractionNumbers,otherNumbers]{({a}^5 - ({a}^5) + {a}^5 /2- {a}^5/5) *{R0*b^2*c}/{6*a^3*Mass}}.\\]

\n

Finaly, for $z$ coordinate:

\n

\\[\\bar z= \\frac{1}{M}\\int_T z\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)}z\\rho(x)\\,dy\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a}\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)} z\\var{R0}(\\var{a}+x) \\,dy\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M} \\int_0^\\var{a}\\var{R0}(\\var{a}+x)\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}z\\int_0^{\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)}   \\,dy\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)} z\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)} \\var{b}\\left( z - \\frac{xz}{\\var{a}} - \\frac{z^2}{\\var{c}}\\right)\\,dz\\,dx =\\\\[3mm]
\\frac{\\simplify{{R0*a}}}{M}\\int_0^\\var{a} (\\var{a}+x) \\left[ \\frac{z^2}{2} - \\frac{xz^2}{\\var{2*a}} - \\frac{z^3}{\\var{3*c}}\\right]_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}\\,dx =\\\\[3mm]
\\frac{\\simplify{{R0*c^2}}}{\\simplify{{6*a^2}}M}\\int_0^\\var{a} (\\var{a}+x)(a-x)^3\\,dx =
\\frac{\\simplify{{R0*c^2}}}{\\simplify{{6*a^2}}M}\\int_0^\\var{a} \\var{a^4}-\\var{2*a^3}x + \\var{2*a}x^3 - x^4\\,dx\\\\[3mm]
\\frac{\\simplify{{R0*c^2}}}{\\simplify{{6*a^2}}M}\\left[\\var{a^4}x -\\frac{\\var{2*a^3}x^2}{2} + \\frac{\\var{a}x^4}{2} - \\frac{x^5}{5}\\right]_0^{\\var{a}}=\\\\[3mm]




\\simplify[fractionNumbers]{({a^5} -{2*a^5}/2 + {a^5}/2 - {a^5}/5) *{R0*c^2}/{6*a^2*Mass}} =
\\simplify[fractionNumbers,otherNumbers]{({a^5} -{2*a^5}/2 + {a^5}/2 - {a^5}/5) *{R0*c^2}/{6*a^2*Mass}}.
\\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "r0": {"name": "r0", "group": "Ungrouped variables", "definition": "random(1 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "massCentrex": {"name": "massCentrex", "group": "Ungrouped variables", "definition": "((a^5/2 - a^5/3 - a^5/4 + a^5/5)*(R0*b*c))/(2*(a^2)*Mass)", "description": "", "templateType": "anything", "can_override": false}, "Mass": {"name": "Mass", "group": "Ungrouped variables", "definition": "(5*{a^2}*{b}*{c}*{R0})/24", "description": "", "templateType": "anything", "can_override": false}, "massCentrey": {"name": "massCentrey", "group": "Ungrouped variables", "definition": "((a^5 - a^5 + a^5/2- a^5/5) *(R0*b^2*c))/(6*a^3*Mass)", "description": "", "templateType": "anything", "can_override": false}, "massCentrez": {"name": "massCentrez", "group": "Ungrouped variables", "definition": "((a^5 - (2*a^5)/2 + a^5/2 - a^5/5)*(R0*c^2))/(6*(a^2)*Mass)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "r0", "Mass", "massCentrex", "massCentrey", "massCentrez"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the mass of the tetrahedron.

\n

(enter your answer as an interger or a fraction)

", "answer": "5*{a^2}*{b}*{c}*{R0}/24", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the centre of mass of the tetrahedron:

\n

$\\bar x$ = [[0]]

\n

$\\bar y$ = [[1]]

\n

$\\bar z$ = [[2]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{massCentrex}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{massCentrey}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{massCentrez}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Double integral in polar coordinates - concentric circles", "extensions": ["eukleides", "geogebra", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "

Double integral in polar coordinates - concentric circles

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Compute the integral 

\n

\\[\\iint_R \\frac{y^2}{\\sqrt{x^2 + y^2}}\\, dx\\, dy\\] 

\n

where $R$ is the region between the circles $x^2 + y^2 = \\var{r1}$ and $x^2 + y^2 = \\var{r2}$. 

", "advice": "

Recall that ew pass to polar coordinates using $x=r\\cos(\\theta)$ and $r\\sin(\\theta)$.

\n

a) Plug the values above into $ \\frac{y^2}{\\sqrt{x^2 + y^2}}$ we get 

\n

\\[ \\frac{r^2\\sin^2(\\theta)}{\\sqrt{r^2\\cos^2(\\theta) + r^2\\sin^2(\\theta)}} = \\frac{r^2\\sin^2(\\theta)}{r\\sqrt{\\cos^2(\\theta) + \\sin^2(\\theta)}} = r\\sin^2(\\theta).\\]

\n

\n

b) The area we are interested is the area between the concentric circles below (this shape is called and annulus)

\n

{diagram}

\n

This are can be described by the inequalities 

\n

\\[0<\\theta\\leq 2\\pi \\quad \\mbox{ and }\\quad \\var{r1}<r<\\var{r2}\\] 

\n

in polar coordinates.

\n

\n

c) Note that the order the integration does not matter as boundaries for both variables are constants. The integral thus can be written as 

\n

\\[\\int_{\\var{r1}}^{\\var{r2}}\\int_{0}^{2\\pi} r^2\\sin^2(\\theta)\\, d\\theta\\,dr.\\]

\n

\n

d) 

\n

\\[\\int_{\\var{r1}}^{\\var{r2}}\\int_{0}^{2\\pi} r^2\\sin^2(\\theta)\\, d\\theta\\,dr = \\int_{\\var{r1}}^{\\var{r2}}r^2 \\int_{0}^{2\\pi} \\sin^2(\\theta)\\, d\\theta\\,dr  = -\\int_{\\var{r1}}^{\\var{r2}}r^2 \\left[\\frac{\\sin(2\\theta) - 2\\theta}{4}\\right]_0^{2\\pi}\\,dr 
= \\\\[3mm ]\\int_{\\var{r1}}^{\\var{r2}}r^2 \\pi\\,dr = \\pi\\left[\\frac{r^3}{3}\\right]_{\\var{r1}}^{\\var{r2}}  = \\pi\\left(\\frac{\\var{r2}^2 - \\var{r1}^2}{3}\\right) = \\var{ans}.\\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"r1": {"name": "r1", "group": "Ungrouped variables", "definition": "random(1 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "r2": {"name": "r2", "group": "Ungrouped variables", "definition": "random(r1..4 except r1)", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "(1/3)*pi*(r2^2 - r1^2)", "description": "", "templateType": "anything", "can_override": false}, "diagram": {"name": "diagram", "group": "Ungrouped variables", "definition": "jessiecode(400,400,\"\"\"\n\n A = point(0,0) <>;\n C = circle(O,{r1}) <>;\n D = circle(O,{r2}) <>;\n\n\"\"\")", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["r1", "r2", "ans", "diagram"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rewrite the function $ \\frac{y^2}{\\sqrt{x^2 + y^2}}$ in polar coordinates 

\n

", "answer": "r*sin^2(theta)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "r", "value": ""}, {"name": "sin", "value": ""}, {"name": "theta", "value": ""}]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Parametrise the region $R$ in polar coordinate

\n

[[0]]$<\\theta<$ [[1]]  and [[2]] $<r<$[[3]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Gap0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": true, "customName": "Gap1", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "2*pi", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{r1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{r2}", "maxValue": "{r2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write down the integral in polar coordinates

", "answer": "defint(defint(r^2sin^2theta,theta,0,2pi),r,{r1},{r2})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "r", "value": ""}, {"name": "sin", "value": ""}, {"name": "theta", "value": ""}]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Evaluate the integral you wrote in the previous part:

\n

[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{ans}", "maxValue": "{ans}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "moment of inertia - cylinder", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "

moment of inertia - cylinder

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Determine the moment of inertia of the cylinder $C$ of uniform density $\\rho = \\var{d}$, height $\\var{h}$, and radius $\\var{a}$ about the axis passing through the centres of its circular faces.

", "advice": "

We can, naturally, consider this problem in cylindricla coordinates. 

\n

We may assume that the cylinder $C$ sits in the space such that the axis rotation described in the question is the $z$-axis.

\n

Then $C$ can be described by 

\n

\\[0\\leq r \\leq \\var{a} \\quad \\mbox{and } \\quad 0\\leq \\theta\\leq 2\\pi \\quad\\mbox{and}\\quad 0\\leq z\\leq h.\\]

\n

\n

In cylindrical coordinates, the mass element is $dM = \\rho dV = \\rho r\\,d\\theta\\,dr\\, dz$. Also observe that each mass element is at the distance of $r$ to the axis of rotation. Then the moment of inertia is 

\n

\\[I_z = \\int_C r^2 \\, dM = \\int_C r^2\\rho\\, dV =\\iiint_C r^3\\rho\\, d\\theta\\,dr\\, dz =\\\\[3mm] \\int_0^{\\var{h}}\\int_0^{2\\pi}\\int_0^{\\var{a}} r^3\\rho\\, dr\\,d\\theta \\, dz = \\rho\\int_0^{\\var{h}}\\, dz \\int_0^{2\\pi}\\,d\\theta \\int_0^{\\var{a}} r^3\\, dr . \\]

\n

Note that for the last equality we used the fact that boundaries of the integrals are constants.

\n

\n

Thus we obtain 

\n

\\[I_z = \\rho [z]_0^{\\var{h}} [\\theta]_0^{2\\pi}\\left[ \\frac{r^4}{4}\\right]_0^{\\var{a}} = \\frac{1}{2}\\pi\\rho\\times\\var{h}\\times{a^4} = \\simplify{1/2*pi*{d}*{h}*{a}^4}.\\]

\n

Also note that $I_z = \\frac{1}{2}M\\var{a}^2$ where $M = \\rho V$, with $V=\\pi\\times\\var{a}^2\\times\\var{h}$. 

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(1 .. 5#0.25)", "description": "", "templateType": "randrange", "can_override": false}, "V": {"name": "V", "group": "Ungrouped variables", "definition": "pi*(a^2)*h", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["d", "a", "h", "V"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "1/2*{d}*{V}*{a^2}", "maxValue": "1/2*{d}*{V}*{a^2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": " moment of inertia - cylinder-non-uniform", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "

moment of inertia - cylinder

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Determine the moment of inertia of the cylinder $C$ of density varies as $\\rho = \\var{d}xy$, height $\\var{h}$, and radius $\\var{a}$ about the axis passing through the centres of its circular faces.

", "advice": "

We can, naturally, consider this problem in cylindricla coordinates. 

\n

We may assume that the cylinder $C$ sits in the space such that the axis rotation described in the question is the $z$-axis.

\n

Then $C$ can be described by 

\n

\\[0\\leq r \\leq \\var{a} \\quad \\mbox{and } \\quad 0\\leq \\theta\\leq 2\\pi \\quad\\mbox{and}\\quad 0\\leq z\\leq h.\\]

\n

We also have to turn $\\rho(x,y)$ into polar coordinates. 

\n

\\[\\rho(x,y) = \\var{d}(r\\cos\\theta)(r\\sin\\theta) = \\var{d}\\cdot r^2\\cos\\theta\\sin\\theta.\\]

\n

Then, in cylindrical coordinates, the mass element becomes $dM = \\rho dV = r^2\\cos\\theta\\sin\\theta \\,r\\,d\\theta\\,dr\\, dz$. Also, observe that each mass element is at the distance of $r$ to the axis of rotation. Then the moment of inertia is 

\n

\\[I_z = \\int_C r^2 \\, dM = \\int_C r^2\\rho\\, dV =\\iiint_C \\var{d}\\cdot r^5 \\cos\\theta\\sin\\theta\\, d\\theta\\,dr\\, dz =\\\\[3mm] \\var{d}\\int_0^{\\var{h}}\\int_0^{2\\pi}\\int_0^{\\var{a}} r^5\\cos\\theta\\sin\\theta\\, dr\\,d\\theta \\, dz = \\var{d}\\int_0^{\\var{h}}\\, dz \\int_0^{2\\pi} \\cos\\theta\\sin\\theta\\,d\\theta \\int_0^{\\var{a}} r^5\\, dr . \\]

\n

Note that for the last equality we used the fact that boundaries of the integrals are constants.

\n

We can compute the integrals separately as follows:

\n
    \n
  • \\[\\int_0^{\\var{h}}\\, dz = [z]_0^{\\var{h}} = \\var{h}\\]
  • \n
  • \\[\\int_0^{2\\pi} \\cos\\theta\\sin\\theta\\,d\\theta =  \\left[-\\frac{\\cos^2\\theta}{2}\\right]_0^{2\\pi} = \\frac{1-\\cos^2(2\\pi)}{2} =0.\\]
  • \n
  • \\[\\int_0^{\\var{a}} r^5\\, dr = \\left[\\frac{r^6}{6}\\right]_0^{\\var{a}} = \\frac{\\var{a^6}}{6}.\\]
  • \n
\n

\n

Thus we obtain 

\n

\\[I_z = \\var{d}\\times\\var{h}\\times 0\\times \\frac{\\var{a^6}}{6} = 0.\\]

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(1 .. 5#0.25)", "description": "", "templateType": "randrange", "can_override": false}, "V": {"name": "V", "group": "Ungrouped variables", "definition": "pi*(a^2)*h", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["d", "a", "h", "V"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "allowAttemptDownload": false, "downloadEncryptionKey": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": []}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "extensions": ["eukleides", "geogebra", "jsxgraph"], "custom_part_types": [], "resources": []}