// Numbas version: finer_feedback_settings {"name": "Double Integrals", "metadata": {"description": "
set of exercises on double and triple integrals
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], []], "questions": [{"name": "Ugur's copy of Resolve a double integral", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "Calculate a repeated integral of the form $\\displaystyle I=\\int_0^1\\;\\int_0^{x^{m-1}}mf(x^m+a)dy \\;dx$
\nThe $y$ integral is trivial, and the $x$ integral is of the form $g'(x)f'(g(x))$, so it straightforwardly integrates to $f(g(x))$.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following repeated integral:
\n\\[ I = \\int_0^1 \\; \\int_0^{\\simplify[all]{x^{m-1}}}\\var{m} \\var{fun} \\; \\mathrm{d}y\\; \\mathrm{d}x \\]
", "advice": "We want to find
\n\\[ I=\\int_0^1 \\; \\int_0^{\\simplify[all]{x^{m-1}}} \\var{m} \\var{fun} \\; \\mathrm{d}y \\; dx \\]
\nThe innermost integral gives:
\n\\[ \\int_0^{\\simplify[all]{x^{m-1}}}\\var{m} \\var{fun} \\; \\mathrm{d}y = \\left[\\var{m}y \\; \\var{fun} \\right]_0^{\\simplify[all]{x^{m-1}}}=\\simplify[all]{{m}x^{m-1}} \\var{fun} \\]
\nSo we have to find $\\displaystyle I=\\int_0^1\\simplify[all]{{m}x^{m-1}} \\var{fun} \\; \\mathrm{d}x$.
\nNote that if we use the substitution $u=\\simplify[all]{x^{m}+{a}}$ then it is easy to find this last definite integral and we find that:
\n$I=\\var{ans}$ to 3 decimal places.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"ans": {"name": "ans", "group": "Ungrouped variables", "definition": "precround(upper-lower,3)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "fun": {"name": "fun", "group": "Ungrouped variables", "definition": "latex(\n switch(\n t=1,\n '\\\\sin',\n t=2,\n '\\\\cos',\n '\\\\exp'\n )\n +'(x^{'+m+'}+'+a+')'\n)", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "upper": {"name": "upper", "group": "Ungrouped variables", "definition": "switch(t=1,-cos(1+a),t=2,sin(1+a),exp(1+a))", "description": "", "templateType": "anything", "can_override": false}, "lower": {"name": "lower", "group": "Ungrouped variables", "definition": "switch(t=1,-cos(a),t=2,sin(a),exp(a))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "upper", "lower", "m", "t", "ans", "fun"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$I=\\;$[[0]]
\nInput your answer to 3 decimal places.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans", "maxValue": "ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Ugur's copy of Double integral - limit is a polynomial", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "3 Repeated integrals of the form $\\int_a^b\\;\\int_c^{f(x)}g(x,y)\\;dy \\;dx$ where $g(x,y)$ is a polynomial in $x,\\;y$ and $f(x)$ is a degree 0, 1 or 2 polynomial in $x$.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Calculate the following repeated integrals.
", "advice": "\\[I = \\int_0^{\\var{a}} \\;\\int_{\\var{f}}^{\\var{g}}\\simplify[all]{({b}+{c}*x+{d}*y)} \\; \\mathrm{d}y\\; \\mathrm{d}x\\]
\nCalculating the inner integral, we have:
\n\\begin{align}
\\int_{\\var{f}}^{\\var{g}}\\simplify[all,!noleadingminus,!collectNumbers]{({b}+{c}*x+{d}*y)} \\; \\mathrm{d}y &= \\left[\\simplify[all,!noleadingminus,!collectNumbers]{{b}y+{c}*x*y+{d}*y^2/2}\\right]_{\\var{f}}^{\\var{g}}\\\\
&= \\simplify[all,!noleadingminus,!collectNumbers]{{b} * {g} + {c} * {g} * x + {d / 2} * {g ^ 2} + {b} * { -f} + {c} * { -f} * x + {d / 2} * { -(f ^ 2)}} \\\\
&= \\simplify[all,!noleadingminus,!collectNumbers]{ {b * g -(b * f) + (d / 2) * (g ^ 2 -(f ^ 2))} + {c * g -(c * f)} * x}
\\end{align}
The outer integral gives:
\n\\begin{align}
I &= \\simplify[std]{DefInt({b * g -(b * f) + (d / 2) * (g ^ 2 -(f ^ 2))} + {c * g -(c * f)} * x,x,0,{a}) } \\\\
&= \\left[\\simplify[std]{{b * g -(b * f) + (d / 2) * (g ^ 2 -(f ^ 2))} * x + {(c * g -(c * f)) / 2} * x ^ 2}\\right]_0^{\\var{a}} \\\\
&= \\var{ans1}
\\end{align}
\\[ I=\\var{(m + 1) * (m + n + 2)} \\int_0^1 \\; \\mathrm{d}x \\int_x^{\\var{b1}}\\simplify[std]{({n + 1} * x ^ {m} * y ^ {n})} \\; \\mathrm{d}y \\]
\nCalculating the inner integral, we have:
\n\\begin{align}
\\int_x^{\\var{b1}}\\simplify[std]{({n + 1} * x ^ {m} * y ^ {n})}dy &= \\left[x^{\\var{m}}y^{\\var{n+1}}\\right]_x^{\\var{b1}} \\\\
&= \\simplify{{b1 ^ (n + 1)}* x ^ {m} -(x ^ {m + n + 1})}
\\end{align}
Finally the outer integral gives:
\n\\begin{align}
I &= \\var{(m + 1) * (m + n + 2)}\\int_0^1\\simplify[std]{{b1^ (n + 1)} * x ^ {m} -(x ^ {m + n + 1})} \\; \\mathrm{d}x \\\\
&= \\simplify[std]{ {(m + 1) * (m + n + 2)} * ({b1 ^ (n + 1)} / {m + 1} -(1 / {m + n + 2})) } \\\\
&= \\var{ans2}
\\end{align}
\\[ I=\\var{con}\\int_{-1}^1 \\; \\int_0^{\\simplify[all]{{c2}+{d2}*x^{p2}}}\\simplify[all]{{c1}+{d1}*y^{p1}} \\; \\mathrm{d}y \\; \\mathrm{d}x \\]
\nCalculating the inner integral, we have:
\n\\begin{align}
\\int_0^{\\simplify[all]{{c2}+{d2}*x^{p2}}}\\simplify[all]{{c1}+{d1}*y^{p1}} \\; \\mathrm{d}y &= \\left[\\simplify[all]{{c1} * y + {d1 / (p1 + 1)} * y ^ {p1 + 1}}\\right]_0^{\\simplify[all]{{c2}+{d2}*x^{p2}}} \\\\
&= \\simplify[std]{{c1} * ({c2} + {d2} * x ^ {p2}) + {d1 / (p1 + 1)} * ({c2} + {d2} * x ^ {p2}) ^ {p1 + 1}} \\\\
&= \\simplify[std]{ {c1 * c2} + {c1 * d2} * x ^ {p2} + {p1 -1} * {h1} * ({c2 ^ 3} + {3 * c2 ^ 2 * d2} * x ^ {p2} + {3 * c2 * d2 ^ 2} * x ^ {2 * p2} + {d2} ^ 3 * x ^ {3 * p2}) + {2 -p1} * {h1} * ({c2 ^ 2} + {2 * c2 * d2} * x ^ {p2} + {d2 ^ 2} * x ^ {2 * p2})} \\\\
&= \\simplify[std,collectNumbers]{{c1 * c2 + (p1 -1) * h1 * c2 ^ 3 + (2 -p1) * h1 * c2 ^ 2} + {c1 * d2 + (p1 -1) * h1 * 3 * c2 ^ 2 * d2 + (2 -p1) * h1 * 2 * c2 * d2} * x ^ {p2} + {(p1 -1) * h1 * 3 * c2 * d2 ^ 2 + (2 -p1) * h1 * d2 ^ 2} * x ^ {2 * p2} + {(p1 -1) * h1 * d2 ^ 3} * x ^ {3 * p2}}
\\end{align}
Finally the outer integral gives:
\n\\begin{align}
I &= \\simplify[std]{{con} * DefInt({c1 * c2 + (p1 -1) * h1 * c2 ^ 3 + (2 -p1) * h1 * c2 ^ 2} + {c1 * d2 + (p1 -1) * h1 * 3 * c2 ^ 2 * d2 + (2 -p1) * h1 * 2 * c2 * d2} * x ^ {p2} + {(p1 -1) * h1 * 3 * c2 * d2 ^ 2 + (2 -p1) * h1 * d2 ^ 2} * x ^ {2 * p2} + {(p1 -1) * h1 * d2 ^ 3} * x ^ {3 * p2},x, -1,1)} \\\\
&= \\var{ans3}
\\end{align}
\n
", "rulesets": {"std": ["all", "!collectnumbers", "!noleadingminus", "fractionNumbers"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"p2": {"name": "p2", "group": "Ungrouped variables", "definition": "if(p1=1,2,1)", "description": "", "templateType": "anything", "can_override": false}, "ans2": {"name": "ans2", "group": "Ungrouped variables", "definition": "(m+n+2)*b1^(n+1)-m-1", "description": "", "templateType": "anything", "can_override": false}, "ans3": {"name": "ans3", "group": "Ungrouped variables", "definition": "if(p1=1,30*c1*c2+10*c1*d2+15*c2^2*d1+10*d1*d2*c2+3*d1*d2^2,6*c1*c2+2*d1*c2^3+2*d1*c2*d2^2)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2,4,6)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(-2..3)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(-2..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "switch(p1=1,random(-6,-4,-2,2,4,6),random(-6,-3,3,6))", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-2,-1,1,2)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "a*b*(g-f)+c*(g-f)*a^2/2+d*(g^2-f^2)*a/2", "description": "", "templateType": "anything", "can_override": false}, "p1": {"name": "p1", "group": "Ungrouped variables", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}, "con": {"name": "con", "group": "Ungrouped variables", "definition": "if(p2=1,3,15)", "description": "", "templateType": "anything", "can_override": false}, "h1": {"name": "h1", "group": "Ungrouped variables", "definition": "round(d1/(p1+1))", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "f+random(2,4,6)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-4..4 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "p2", "c", "b", "d", "g", "f", "ans1", "ans2", "h1", "ans3", "m", "n", "p1", "b1", "c2", "c1", "d1", "d2", "con"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
\\[I = \\int_0^{\\var{a}}\\;\\int_{\\var{f}}^{\\var{g}}\\simplify[all]{({b}+{c}*x+{d}*y)}\\;dy \\;dx\\]
\n$I=$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans1", "maxValue": "ans1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\[I=\\var{(m+1)(m+n+2)}\\int _0^1\\;\\int_x^{\\var{b1}}\\simplify[all]{{n+1}*x^{m}*y^{n}}\\;dy \\;dx\\]
\n$I=\\;$[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans2", "maxValue": "ans2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\[I=\\var{con}\\int_{-1}^1\\;\\int_0^{\\simplify[all]{{c2}+{d2}*x^{p2}}}\\simplify[all]{{c1}+{d1}*y^{p1}}\\;dy \\;dx\\]
\n$I=\\;$?[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans3", "maxValue": "ans3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Tutorial: Inputting Integrals", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "Inputing Integrals tutorial
", "licence": "Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International"}, "statement": "To input integrals in Numbas we use the commands int() and defint(). We will see how to use them in more detail here.
\nThis is a tutorial
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To input the integral $\\int x^3 \\,dx$, write int(x^3, x) in the area below.
One can also write the expression $\\int\\, dx$. To do so, input int('',x). The expression '' tells that the firtst argument of the function is an empty string.
You can also input definite integrals. For this we use defint(). This function has four arguments, as made clear in the below example:
To input $\\int^b_a f(x) \\, dx$, write defint(f(x), x, a, b).
For inputting double integrals, one can use int() and defint() nested.
For example to write $\\int^b_a\\int^d_c g(x,y) \\,dx\\, dy$, input defint(defint(g(x,y), x, c,d),y,a,b)
Calculating the area enclosed between a linear function and a quadratic function by integration. The limits (points of intersection) are not given in the question and must be calculated.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Find the area enclosed by $\\simplify{y={m}x+{c_1}}$ and $\\simplify{y=x^2+{b}x+{c_2}}$ using a double integral.
\n\n{geogebra_applet('https://www.geogebra.org/m/fyxr2fqj',defs)}
", "advice": "a)
\nTo find the points of intersection, we will solve the given eqautions simultaneously. We equate the two and solve for $x$ first:
\n\\[ \\begin{split} \\simplify{x^2+{b}x+{c_2}} &\\,= \\simplify{{m}x+{c_1}}, \\\\ \\simplify{x^2+{b-m}x+{c_2-c_1}} &\\,=0, \\\\ \\simplify{(x-{cp1})(x-{cp2})}&\\,=0. \\end{split} \\]
\nTherefore, the points of intersection are when $\\simplify{x1={cp1}}$ and $\\simplify{x2={cp2}}$.
\nNow by pluging-in these values into $\\simplify{y={m}x+{c_1}}$ we get $\\simplify{y_1 = {y1}}$ and $\\simplify{y_2 = {y2}}$.
\n\nb)
\nWe are asked to integrate $y$ first. So, $x$ can vary freely in the range we found above, and $y$ will vary depending on $x$. So the relevant boundaries of the variables are
\n\\[ \\var{x1} < x < \\var{x2} \\quad \\mbox{ and }\\quad \\simplify{x^2+{b}x+{c_2}} < y < \\simplify{{m}x+{c_1}}\\simplify{x^2+{b}x+{c_2}}.\\]
\nThen the integral
\n\\[\\int_{\\var{x1}}^{\\var{x2}} \\int_{\\simplify{x^2+{b}x+{c_2}}}^{\\simplify{{m}x+{c_1}}}\\, \\mathrm{d}y\\, \\mathrm{d}x\\]
\ncan be used to compute the shaded area.
\n\nc)
\nWe start with the inner integral first
\n\\[\\int_{\\simplify{x^2+{b}x+{c_2}}}^{\\simplify{{m}x+{c_1}}}\\, \\mathrm{d}y = y|_{\\simplify{x^2+{b}x+{c_2}}}^{\\simplify{{m}x+{c_1}}} = \\simplify{{m}x+{c_1}} - (\\simplify{x^2+{b}x+{c_2}}) = \\simplify{-x^2 + {m-b}x + {c_1-c_2}}.\\]
\n\nThen we get
\n\\[\\int_{\\var{x1}}^{\\var{x2}} \\int_{\\simplify{x^2+{b}x+{c_2}}}^{\\simplify{{m}x+{c_1}}}\\, \\mathrm{d}y\\, \\mathrm{d}x =\\] {advice}
\n\n\n\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-6..6)", "description": "", "templateType": "anything", "can_override": false}, "c_1": {"name": "c_1", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "cp1": {"name": "cp1", "group": "Ungrouped variables", "definition": "(-(b-m)-sqrt(dis))/2", "description": "", "templateType": "anything", "can_override": false}, "cp2": {"name": "cp2", "group": "Ungrouped variables", "definition": "(-(b-m)+sqrt(dis))/2", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "c_2": {"name": "c_2", "group": "Ungrouped variables", "definition": "random(-8..8 except [0,c_1])", "description": "", "templateType": "anything", "can_override": false}, "dis": {"name": "dis", "group": "Ungrouped variables", "definition": "(b-m)^2-4*(c_2-c_1)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2+(cp1)^3/3-(m-b)cp1^2/2-(c_1-c_2)*cp1", "description": "", "templateType": "anything", "can_override": false}, "sol2dp": {"name": "sol2dp", "group": "Ungrouped variables", "definition": "precround(sol,2)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "if(sol=round(sol),'{simplified}',advice2)", "description": "", "templateType": "anything", "can_override": false}, "simplified": {"name": "simplified", "group": "Ungrouped variables", "definition": "\"
\\\\[ \\\\begin{split}\\\\simplify[all, !noLeadingMinus]{defint(-x^2+{m-b}x+{c_1-c_2},x,{cp1},{cp2})} &\\\\,= \\\\left[\\\\simplify[all, !noLeadingMinus]{-x^3/3+{m-b}x^2/2+{c_1-c_2}x} \\\\right]_\\\\var{cp1}^\\\\var{cp2},\\\\\\\\ &\\\\,=\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp2^3/3}+{(m-b)*cp2^2/2}+{(c_1-c_2)*cp2}}\\\\right]-\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp1^3/3}+{(m-b)*cp1^2/2}+{(c_1-c_2)*cp1}}\\\\right]\\\\\\\\ &\\\\,= \\\\left(\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2}}\\\\right)-\\\\left(\\\\simplify[all, fractionNumbers]{{-(cp1)^3/3+(m-b)cp1^2/2+(c_1-c_2)*cp1}}\\\\right)\\\\\\\\ &\\\\,=\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2+(cp1)^3/3-(m-b)cp1^2/2-(c_1-c_2)*cp1}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "simplify": {"name": "simplify", "group": "Ungrouped variables", "definition": "safe(\"\\\\[ \\\\begin{split}\\\\simplify[all, !noLeadingMinus]{defint(-x^2+{m-b}x+{c_1-c_2},x,{cp1},{cp2})} &\\\\,= \\\\left[\\\\simplify[all, !noLeadingMinus]{-x^3/3+{m-b}x^2/2+{c_1-c_2}x} \\\\right]_\\\\var{cp1}^\\\\var{cp2},\\\\\\\\ &\\\\,=\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp2^3/3}+{(m-b)*cp2^2/2}+{(c_1-c_2)*cp2}}\\\\right]-\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp1^3/3}+{(m-b)*cp1^2/2}+{(c_1-c_2)*cp1}}\\\\right]\\\\\\\\ &\\\\,= \\\\left(\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2}}\\\\right)-\\\\left(\\\\simplify[all, fractionNumbers]{{-(cp1)^3/3+(m-b)cp1^2/2+(c_1-c_2)*cp1}}\\\\right)\\\\\\\\ &\\\\,=\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2+(cp1)^3/3-(m-b)cp1^2/2-(c_1-c_2)*cp1}}\\\\\\\\ &\\\\,=\\\\var{sol2dp} \\\\,\\\\text{(2dp)}. \\\\end{split} \\\\]
\")", "description": "", "templateType": "long string", "can_override": false}, "advice2": {"name": "advice2", "group": "Ungrouped variables", "definition": "if(sol=sol2dp,'{simplifyy}','{simplify}')", "description": "", "templateType": "anything", "can_override": false}, "simplifyy": {"name": "simplifyy", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\begin{split}\\\\simplify[all,!noLeadingMinus]{defint(-x^2+{m-b}x+{c_1-c_2},x,{cp1},{cp2})} &\\\\,= \\\\left[\\\\simplify[all,!noLeadingMinus]{-x^3/3+{m-b}x^2/2+{c_1-c_2}x} \\\\right]_\\\\var{cp1}^\\\\var{cp2},\\\\\\\\ &\\\\,=\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp2^3/3}+{(m-b)*cp2^2/2}+{(c_1-c_2)*cp2}}\\\\right]-\\\\left[\\\\simplify[all, !collectNumbers,fractionNumbers,!noLeadingMinus]{-{cp1^3/3}+{(m-b)*cp1^2/2}+{(c_1-c_2)*cp1}}\\\\right]\\\\\\\\ &\\\\,= \\\\left(\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2}}\\\\right)-\\\\left(\\\\simplify[all, fractionNumbers]{{-(cp1)^3/3+(m-b)cp1^2/2+(c_1-c_2)*cp1}}\\\\right)\\\\\\\\ &\\\\,=\\\\simplify[all, fractionNumbers]{{-(cp2^3/3)+(m-b)cp2^2/2+(c_1-c_2)*cp2+(cp1)^3/3-(m-b)cp1^2/2-(c_1-c_2)*cp1}}\\\\\\\\ &\\\\,=\\\\var{sol2dp} \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "defs": {"name": "defs", "group": "Ungrouped variables", "definition": "[\n ['M',m],\n ['D',c_1],\n ['B',b],\n ['C',c_2]\n]", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "((m-b)+delta)/2", "description": "", "templateType": "anything", "can_override": false}, "delta": {"name": "delta", "group": "Ungrouped variables", "definition": "sqrt((b-m)^2 - 4*(c_2-c_1))", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "((m-b)-delta)/2", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "m*x1 + c_1", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "m*x2 + c_1", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "cp1=round(cp1) and cp2=round(cp2) and dis>0", "maxRuns": "100"}, "ungrouped_variables": ["m", "c_1", "b", "c_2", "cp1", "cp2", "dis", "sol", "sol2dp", "advice", "advice2", "simplified", "simplify", "simplifyy", "defs", "x2", "delta", "x1", "y1", "y2"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Denote the intersection points of $\\simplify{y={m}x+{c_1}}$ and $\\simplify{y=x^2+{b}x+{c_2}}$ as $(x_1, y_1)$ (leftmost) and $(x_2,y_2)$ (rightmost). Find these points
\n$x_1=$[[0]], $y_1=$[[1]]
\n$x_2=$[[2]], $y_2=$ [[3]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{x1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{y1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{x2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": true, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{y2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Write a double integral, integrating $y$ first, to compute the shaded area.
", "answer": "defint(defint( '',y, x^2+{b}x+{c_2}, {m}x+{c_1}), x,{x1},{x2})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Compute the double integral you wrote in part b)
\n[[0]] (Give your answers to 2 decimal places where necessary)
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol2dp}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Volume of a tetrahedron", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "Volume of a tetrahedron using integrals
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "Find the volume of the tetrahedron bounded by the coordinate planes $x=0$, $y=0$ and $z=0$ and the plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} =1$.
", "advice": "The coordinate surfaces $x=0$, $y=0$ and $z=0$ are given. The plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} = 1$ can be rewritten as a functions as follows
\n\\[z = f(x,y) = \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right).\\]
\nThe surface of $f(x,y)$ intersects the axes at $x=\\var{a}, y=\\var{b}$ and $z=\\var{c}$.
\nLet us integrate $y$-firts. Then the triangular region the tetrahedron sits is bounded by the lines $x=0, y=0$ and $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} = 1$. Then we have the following bounds for integration
\n\\[0<x<\\var{a} \\quad \\mbox{and} \\quad 0 < y< \\frac{\\var{b}}{\\var{a}}(\\var{a} -x).\\]
\nHence, we can compute the volume of the tetrahedron as
\n\\[V = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}f(x,y) \\,dy\\, dx = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\, dx =\\\\[3mm]
= \\int_0^\\var{a} \\var{c}\\left[ y - \\frac{xy}{\\var{a}} - \\frac{y^2}{\\simplify{2*{b}}}\\right]_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\, dx = \\int_0^\\var{a} \\frac{\\simplify{{b*c}}}{\\simplify{{2*a^2}}}(\\var{a}-x)^2 \\, dx = \\frac{\\simplify{{a*b*c}}}{6}\\]
(enter your answer as an interger or a fraction)
", "answer": "{a}*{b}*{c}/6", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "mass of tetrahedron", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "mass of tetrahedron via integration
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "Cosider the tetrahedron bounded by the coordinate planes $x=0$, $y=0$ and $z=0$ and the plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} =1$. Assume that it has a density function $\\rho(x) = \\var{R0}(\\var{a}+x)$.
", "advice": "a)
\nThe coordinate surfaces $x=0$, $y=0$ and $z=0$ are given. The plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} = 1$ can be rewritten as a functions as follows
\n\\[z = f(x,y) = \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right).\\]
\nThe surface of $f(x,y)$ intersects the axes at $x=\\var{a}, y=\\var{b}$ and $z=\\var{c}$.
\nWe can write the boundaries of the tetrahedron as
\n\\[0<x<\\var{a} \\quad \\mbox{and} \\quad 0 < y< \\frac{\\var{b}}{\\var{a}}(\\var{a} -x) \\quad\\mbox{and }\\quad 0\\leq z \\leq \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right).\\]
\n\nThus, with mass element $dM = \\rho(x)dV = \\rho(x)dx\\,dy\\,dz$, the total mass is
\n\\[M= \\int_T\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}\\rho(x)\\,dz\\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} \\var{R0}(\\var{a}+x) \\,dz\\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} \\,dz\\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\left[ \\frac{\\simplify{{b*c}}}{\\simplify{{2*a^2}}}(\\var{a}-x)^2\\right]\\, dx = \\frac{5\\cdot\\var{a}^2\\cdot\\var{b}\\cdot\\var{c}\\cdot\\var{R0}}{24}=\\frac{\\simplify{{5*{a^2}*{b}*{c}*{R0}}}}{24}.\\]
b)
\nWe start with the $x$ coordinate.
\n\\[\\bar x= \\frac{1}{M}\\int_T x\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}x\\rho(x)\\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M} \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} x\\var{R0}(\\var{a}+x) \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} x\\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} x\\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} x\\var{R0}(\\var{a}+x)\\left[ \\frac{\\simplify{{b*c}}}{\\simplify{{2*a^2}}}(\\var{a}-x)^2\\right]\\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\int_0^\\var{a} x (\\var{a}+x)\\left[ (\\var{a}-x)^2\\right]\\, dx =
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\int_0^\\var{a}x(\\var{a^3} -\\var{a^2}x-\\var{a} x^2 + x^3) \\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\int_0^\\var{a}\\var{a^3}x -\\var{a^2}x^2-\\var{a} x^3 + x^4 \\, dx = \\\\[3mm]
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\left[\\frac{\\var{a^3}x^2}{2} -\\frac{\\var{a^2}x^3}{3}-\\frac{\\var{a} x^4}{4} + \\frac{x^5}{5} \\right]_0^{\\var{a}}=\\\\[3mm]
\\simplify[fractionNumbers]{({a}^5/2 - ({a}^5)/3 - {a}^5/4 + {a}^5/5) *{R0*b*c}/{2*a^2*Mass}} =
\\simplify[fractionNumbers,otherNumbers]{({a}^5/2 - ({a}^5)/3 - {a}^5/4 + {a}^5/5) *{R0*b*c}/{2*a^2*Mass}}.\\]
Simlarly, for $y$ coordinate:
\n\\[\\bar y = \\frac{1}{M}\\int_T y\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}y\\rho(x)\\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M} \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} y\\var{R0}(\\var{a}+x) \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} y \\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} y\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( y - \\frac{xy}{\\var{a}} - \\frac{y^2}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\frac{\\simplify{{c*b^2}}}{\\simplify{{6*a^3}}}\\left[\\var{a^3}-3\\cdot\\simplify[unitFactor]{{a^2}x} +3\\cdot\\simplify[unitFactor]{{a}x^2}-x^3\\right]\\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b^2*c}}}{\\simplify{{6*a^3}}M}\\int_0^\\var{a} (\\var{a}+x)( \\var{a}-x)^3, dx =
\\frac{\\simplify{{R0*b^2*c}}}{\\simplify{{6*a^3}}M}\\int_0^\\var{a}\\var{a^4} -2\\cdot\\simplify[unitFactor]{{a^3}x} +2\\cdot\\simplify[unitFactor]{{a}x^3}-x^4 \\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b^2*c}}}{\\simplify{{6*a^3}}M}\\left[\\simplify[unitFactor]{{a^4}x} - \\simplify[unitFactor]{{a^3}x^2} +\\frac{\\simplify[unitFactor]{{a}x^4}}{2}-\\frac{x^5}{5} \\right]_0^\\var{a} = \\\\[3mm]
\\simplify[fractionNumbers]{({a}^5 - ({a}^5) + {a}^5 /2- {a}^5/5) *{R0*b^2*c}/{6*a^3*Mass}} =
\\simplify[fractionNumbers,otherNumbers]{({a}^5 - ({a}^5) + {a}^5 /2- {a}^5/5) *{R0*b^2*c}/{6*a^3*Mass}}.\\]
Finaly, for $z$ coordinate:
\n\\[\\bar z= \\frac{1}{M}\\int_T z\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)}z\\rho(x)\\,dy\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a}\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)} z\\var{R0}(\\var{a}+x) \\,dy\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M} \\int_0^\\var{a}\\var{R0}(\\var{a}+x)\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}z\\int_0^{\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)} \\,dy\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)} z\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)} \\var{b}\\left( z - \\frac{xz}{\\var{a}} - \\frac{z^2}{\\var{c}}\\right)\\,dz\\,dx =\\\\[3mm]
\\frac{\\simplify{{R0*a}}}{M}\\int_0^\\var{a} (\\var{a}+x) \\left[ \\frac{z^2}{2} - \\frac{xz^2}{\\var{2*a}} - \\frac{z^3}{\\var{3*c}}\\right]_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}\\,dx =\\\\[3mm]
\\frac{\\simplify{{R0*c^2}}}{\\simplify{{6*a^2}}M}\\int_0^\\var{a} (\\var{a}+x)(a-x)^3\\,dx =
\\frac{\\simplify{{R0*c^2}}}{\\simplify{{6*a^2}}M}\\int_0^\\var{a} \\var{a^4}-\\var{2*a^3}x + \\var{2*a}x^3 - x^4\\,dx\\\\[3mm]
\\frac{\\simplify{{R0*c^2}}}{\\simplify{{6*a^2}}M}\\left[\\var{a^4}x -\\frac{\\var{2*a^3}x^2}{2} + \\frac{\\var{a}x^4}{2} - \\frac{x^5}{5}\\right]_0^{\\var{a}}=\\\\[3mm]
\\simplify[fractionNumbers]{({a^5} -{2*a^5}/2 + {a^5}/2 - {a^5}/5) *{R0*c^2}/{6*a^2*Mass}} =
\\simplify[fractionNumbers,otherNumbers]{({a^5} -{2*a^5}/2 + {a^5}/2 - {a^5}/5) *{R0*c^2}/{6*a^2*Mass}}.
\\]
Find the mass of the tetrahedron.
\n(enter your answer as an interger or a fraction)
", "answer": "5*{a^2}*{b}*{c}*{R0}/24", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the centre of mass of the tetrahedron:
\n$\\bar x$ = [[0]]
\n$\\bar y$ = [[1]]
\n$\\bar z$ = [[2]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{massCentrex}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{massCentrey}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{massCentrez}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Double integral in polar coordinates - concentric circles", "extensions": ["eukleides", "geogebra", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "Double integral in polar coordinates - concentric circles
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "Compute the integral
\n\\[\\iint_R \\frac{y^2}{\\sqrt{x^2 + y^2}}\\, dx\\, dy\\]
\nwhere $R$ is the region between the circles $x^2 + y^2 = \\var{r1}$ and $x^2 + y^2 = \\var{r2}$.
", "advice": "Recall that ew pass to polar coordinates using $x=r\\cos(\\theta)$ and $r\\sin(\\theta)$.
\na) Plug the values above into $ \\frac{y^2}{\\sqrt{x^2 + y^2}}$ we get
\n\\[ \\frac{r^2\\sin^2(\\theta)}{\\sqrt{r^2\\cos^2(\\theta) + r^2\\sin^2(\\theta)}} = \\frac{r^2\\sin^2(\\theta)}{r\\sqrt{\\cos^2(\\theta) + \\sin^2(\\theta)}} = r\\sin^2(\\theta).\\]
\n\nb) The area we are interested is the area between the concentric circles below (this shape is called and annulus)
\n{diagram}
\nThis are can be described by the inequalities
\n\\[0<\\theta\\leq 2\\pi \\quad \\mbox{ and }\\quad \\var{r1}<r<\\var{r2}\\]
\nin polar coordinates.
\n\nc) Note that the order the integration does not matter as boundaries for both variables are constants. The integral thus can be written as
\n\\[\\int_{\\var{r1}}^{\\var{r2}}\\int_{0}^{2\\pi} r^2\\sin^2(\\theta)\\, d\\theta\\,dr.\\]
\n\nd)
\n\\[\\int_{\\var{r1}}^{\\var{r2}}\\int_{0}^{2\\pi} r^2\\sin^2(\\theta)\\, d\\theta\\,dr = \\int_{\\var{r1}}^{\\var{r2}}r^2 \\int_{0}^{2\\pi} \\sin^2(\\theta)\\, d\\theta\\,dr = -\\int_{\\var{r1}}^{\\var{r2}}r^2 \\left[\\frac{\\sin(2\\theta) - 2\\theta}{4}\\right]_0^{2\\pi}\\,dr
= \\\\[3mm ]\\int_{\\var{r1}}^{\\var{r2}}r^2 \\pi\\,dr = \\pi\\left[\\frac{r^3}{3}\\right]_{\\var{r1}}^{\\var{r2}} = \\pi\\left(\\frac{\\var{r2}^3 - \\var{r1}^3}{3}\\right) = \\var{ans}.\\]
Rewrite the function $ \\frac{y^2}{\\sqrt{x^2 + y^2}}$ in polar coordinates
\n", "answer": "r*sin^2(theta)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "r", "value": ""}, {"name": "sin", "value": ""}, {"name": "theta", "value": ""}]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Parametrise the region $R$ in polar coordinate
\n[[0]]$<\\theta<$ [[1]] and [[2]] $<r<$[[3]]
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Gap0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": true, "customName": "Gap1", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "2*pi", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{r1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{r2}", "maxValue": "{r2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Write down the integral in polar coordinates
", "answer": "defint(defint(r^2sin^2theta,theta,0,2pi),r,{r1},{r2})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "r", "value": ""}, {"name": "sin", "value": ""}, {"name": "theta", "value": ""}]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Evaluate the integral you wrote in the previous part:
\n[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{ans}", "maxValue": "{ans}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "moment of inertia - cylinder", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "moment of inertia - cylinder
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "Determine the moment of inertia of the cylinder $C$ of uniform density $\\rho = \\var{d}$, height $\\var{h}$, and radius $\\var{a}$ about the axis passing through the centres of its circular faces.
", "advice": "We can, naturally, consider this problem in cylindricla coordinates.
\nWe may assume that the cylinder $C$ sits in the space such that the axis rotation described in the question is the $z$-axis.
\nThen $C$ can be described by
\n\\[0\\leq r \\leq \\var{a} \\quad \\mbox{and } \\quad 0\\leq \\theta\\leq 2\\pi \\quad\\mbox{and}\\quad 0\\leq z\\leq h.\\]
\n\nIn cylindrical coordinates, the mass element is $dM = \\rho dV = \\rho r\\,d\\theta\\,dr\\, dz$. Also observe that each mass element is at the distance of $r$ to the axis of rotation. Then the moment of inertia is
\n\\[I_z = \\int_C r^2 \\, dM = \\int_C r^2\\rho\\, dV =\\iiint_C r^3\\rho\\, d\\theta\\,dr\\, dz =\\\\[3mm] \\int_0^{\\var{h}}\\int_0^{2\\pi}\\int_0^{\\var{a}} r^3\\rho\\, dr\\,d\\theta \\, dz = \\rho\\int_0^{\\var{h}}\\, dz \\int_0^{2\\pi}\\,d\\theta \\int_0^{\\var{a}} r^3\\, dr . \\]
\nNote that for the last equality we used the fact that boundaries of the integrals are constants.
\n\nThus we obtain
\n\\[I_z = \\rho [z]_0^{\\var{h}} [\\theta]_0^{2\\pi}\\left[ \\frac{r^4}{4}\\right]_0^{\\var{a}} = \\frac{1}{2}\\pi\\rho\\times\\var{h}\\times{a^4} = \\simplify{1/2*pi*{d}*{h}*{a}^4}.\\]
\nAlso note that $I_z = \\frac{1}{2}M\\var{a}^2$ where $M = \\rho V$, with $V=\\pi\\times\\var{a}^2\\times\\var{h}$.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(1 .. 5#0.25)", "description": "", "templateType": "randrange", "can_override": false}, "V": {"name": "V", "group": "Ungrouped variables", "definition": "pi*(a^2)*h", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["d", "a", "h", "V"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "1/2*{d}*{V}*{a^2}", "maxValue": "1/2*{d}*{V}*{a^2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": " moment of inertia - cylinder-non-uniform", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "tags": [], "metadata": {"description": "moment of inertia - cylinder
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "Determine the moment of inertia of the cylinder $C$ of density varies as $\\rho = \\var{d}xy$, height $\\var{h}$, and radius $\\var{a}$ about the axis passing through the centres of its circular faces.
", "advice": "We can, naturally, consider this problem in cylindricla coordinates.
\nWe may assume that the cylinder $C$ sits in the space such that the axis rotation described in the question is the $z$-axis.
\nThen $C$ can be described by
\n\\[0\\leq r \\leq \\var{a} \\quad \\mbox{and } \\quad 0\\leq \\theta\\leq 2\\pi \\quad\\mbox{and}\\quad 0\\leq z\\leq h.\\]
\nWe also have to turn $\\rho(x,y)$ into polar coordinates.
\n\\[\\rho(x,y) = \\var{d}(r\\cos\\theta)(r\\sin\\theta) = \\var{d}\\cdot r^2\\cos\\theta\\sin\\theta.\\]
\nThen, in cylindrical coordinates, the mass element becomes $dM = \\rho dV = r^2\\cos\\theta\\sin\\theta \\,r\\,d\\theta\\,dr\\, dz$. Also, observe that each mass element is at the distance of $r$ to the axis of rotation. Then the moment of inertia is
\n\\[I_z = \\int_C r^2 \\, dM = \\int_C r^2\\rho\\, dV =\\iiint_C \\var{d}\\cdot r^5 \\cos\\theta\\sin\\theta\\, d\\theta\\,dr\\, dz =\\\\[3mm] \\var{d}\\int_0^{\\var{h}}\\int_0^{2\\pi}\\int_0^{\\var{a}} r^5\\cos\\theta\\sin\\theta\\, dr\\,d\\theta \\, dz = \\var{d}\\int_0^{\\var{h}}\\, dz \\int_0^{2\\pi} \\cos\\theta\\sin\\theta\\,d\\theta \\int_0^{\\var{a}} r^5\\, dr . \\]
\nNote that for the last equality we used the fact that boundaries of the integrals are constants.
\nWe can compute the integrals separately as follows:
\nThus we obtain
\n\\[I_z = \\var{d}\\times\\var{h}\\times 0\\times \\frac{\\var{a^6}}{6} = 0.\\]
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(1 .. 5#0.25)", "description": "", "templateType": "randrange", "can_override": false}, "V": {"name": "V", "group": "Ungrouped variables", "definition": "pi*(a^2)*h", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["d", "a", "h", "V"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "allowAttemptDownload": false, "downloadEncryptionKey": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "extensions": ["eukleides", "geogebra", "jsxgraph"], "custom_part_types": [], "resources": []}